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Executive summary 

The QualiMaster project, at roughly half-term during its duration, has achieved all of its goals for 
this period. Regarding the custom hardware integration into the QualiMaster adaptive pipeline, 
meeting all goals was no easy task, as considerable setbacks forced the team to seek alternate 
research solutions, many of which are highlighted in this deliverable.  
 
The Deliverable D3.2 presents the current status of the hardware implementations of various 
algorithms, using the Maxeler Field Programmable Gate Array (FPGA) hardware platform with a 
Dataflow Engine (DFE) computational model. Several of the originally proposed algorithms were 
either proven to be unsuitable for hardware implementation, or the hardware implementation had 
less than expected performance gain due to limits in exploitable parallelism (LDA and SVM, 
respectively). Nonetheless, other algorithms, not originally planned for implementation within the 
original QualiMaster project goals were efficiently mapped to the Maxeler platform. These new 
algorithms yielded substantial speedups vs. state-of-the-art software, or, they allowed for greater 
scale processing to be done vs. software. These algorithms were Mutual Information, Transfer 
Entropy and Hayashi-Yoshida. All three algorithms are of high importance for the overall project 
goal on competitive systemic risk solution. In addition, a Maxeler node which was integrated to the 
community-standard Storm distributed processing environment (see Deliverable D3.1), allowed for 
tight coupling (for the first time, ever) the Maxeler special-purpose hardware with the Storm 
environment and enabled system-level performance evaluation, detailed in the present deliverable.  
 
Following a successful first year review and the reviewers’ comments, the hardware team 
proceeded with the updated QualiMaster objectives. The reviewers’ comments from the first year 
review were explicitly addressed, and they are presented in the current deliverable.  
 
For readability purposes, the tasks and corresponding progress which are detailed in this report, as 
well as the reviewers’ comments and how they were addressed, are presented in tabular form in 
Section 1, so that the correspondence between tasks, reviewers’ comments, and project results 
can be easily established.  
 
Lastly, this deliverable contains (as applicable) information regarding upcoming research actions 
on the WP3 of the QualiMaster project, so that the ―big picture‖ of current progress vis a vis the 
project goals will be apparent.  
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1 Introduction 
In D 3.1 the QualiMaster partners had shown the methodology and design process in order to map 
algorithms to hardware. It has been shown that following a specific methodology these algorithms 
can be mapped to hardware efficiently, with some initial results on such implementations. These 
results were not focusing on performance but rather on an assessment of how well such 
implementations would be mapped on hardware (in the case of LDA the results were negative), 
and initial versions aiming at correct implementation of the algorithms. In the deliverable D3.2 the 
issue of performance was addressed, together with a detailed performance comparison against 
software, and seamless operation of the customized Maxeler systems in the QualiMaster pipeline. 

The remainder of this Section details the tasks associated with the current deliverable and where 
in this report the reader can see the detailed description of the performed work, as well as how the 
reviewers’ comments were addressed. This rest of deliverable D3.2 introduces the outline of the 
platform level design and system architecture of in the QualiMaster pipeline in Section 2. Section 3 
presents in detail all the algorithms that have been implemented, including architectures and 
results. In Section 4 there is the first approach to the Automation Design Procedure, and Section 5 
presents Conclusions. 
 
 

1.1 Selected Algorithms and designs 
The selected algorithms address the QualiMaster goals to process big data and streaming data 
from wide range of financial and social networks sources. This selection has been shown in D3.1 
where the Count Min Sketch and its Exponential Histogram extension to create Histograms for big 
streaming data have been mapped with very promising results. Also, the Hayashi - Yoshida 
correlation estimator has been mapped to hardware with simulated capacity for real time 
correlation estimation 10 times larger than software. The hardware design was experimentally 
verified to calculate the correlation of 5,000 pairs of stocks instead of the 500 pairsthat the 
software can calculate – a significant result since the one order of magnitude change corresponds 
to two orders of magnitude more computations (the problem scales with O(n2)). The Support 
Vector Machine (SVM) training algorithm has also been mapped to hardware, with the 
implementation focusing on social network data processing (e.g. dimensioning the problem, using 
high accuracy, etc.). It was the first full FPGA implementation of SVM training which has the same 
accuracy as the well-known libSVM package to our knowledge. Results proved not to be satisfying 
due to Platform design restriction and I/O bounds. 

In order to process social network and financial data two new algorithms have been selected to be 
implemented for the project. These are the Mutual Information estimator and the Transfer Entropy 
estimator. Both algorithms can be used for the statistical analysis of financial and social network 
data. These algorithms are presented in the present deliverable, and they are giving promising 
initial results (presented in the deliverable). Both algorithms were mapped in hardware by following 
the methodology proposed in D3.1 and the initial results show speedups of 10 times vs. the 
optimized software [24]. 

 

1.2 Interaction with other WPs 
In this deliverable, as was described above, the QualiMaster partners continue and extend the 
work which was reported in D3.1, in the sense that this deliverable is the next step of the design 
and system building approach. This has been done for the algorithms that have been presented in 
D3.1 and for the algorithms that have been introduced in this deliverable.  For the new algorithms 
the partners follow the same methodology as described in D3.1. The new algorithms have been 
selected in coordination with WP 2. Mutual Information and Transfer Entropy are both statistical 
models for big data analysis and are used for processing of both financial and social media data. 
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Furthermore, in this deliverable, the Hayashi Yoshida algorithm that has been mapped to hardware 
has been configured to be connected with the QualiMaster processing pipeline. Lastly, these 
algorithms are part of the QualiMaster Infrastructure at WP5 used for the evaluation report at WP 
6. 

1.3 Addressing D3.2 objectives 
This section focuses on the presentation of the objectives for the deliverable  D3.2,  as they were 
described in the QualiMaster Description of Work (DoW). Table 1shows our actions on the  D3.1 
objectives and where in this deliverable more details can be found. 
 

Task
s 

Objective 
Specific actions 

undertaken according to 
D3.2 objectives 

Sections where more details can be 
found 

Task 
3.1 

Identify and analyse 
algorithms that will 
be accelerated 
through hardware 

Two new algorithms, Mutual 
Information and Transfer 
Entropy, were designed, 
taking into account the I/O 
issues and the algorithm 
profiling.  

Section 3.3.1 – Mutual Information  
 
Section 3.4.1 – Transfer Entropy 

Task 
3.2 

 

Develop an initial 
translation of the 
proposed stream 
processing 
algorithms on 
reconfigurable 
technology, offering 
special-purpose 
hardware-based 
accelerators 
 

We present the initial 
reconfigurable-based 
architectures for the ECM-
sketches, the Hayashi-
Yoshida, the Mutual 
Information, the Transfer 
Entropy and the SVM 
algorithms. 

Section 3.1.2 – ECM Sketches 
Architecture 
 
Section 3.2.2 –Hayashi-Yoshida 
Algorithm Architecture 
 
Section 3.3.2 – Mutual Information 
Algorithm Architecture 
 
Section 3.4.2 –Transfer Entropy 
Algorithm Architecture 
 
Section 3.5.3 –SVM Algorithm 
Architecture 

Provide technical 
restrictions and the 
related tradeoffs of 
reconfigurable 
hardware with 
respect to the initial 
translation of the 
proposed algorithmic 
tasks 

Some initial technical 
restrictions and tradeoffs are 
presented. First, we describe 
the restrictions for all the 
implemented algorithms and 
how the algorithm hardware-
software partitioning takes 
place, e.g. for most of the 
algorithms we build the 
necessary data structures on 
software, while the main 
processing workload takes 
place in reconfigurable logic. 
Second, we describe the 
restrictions on the 
reconfigurable resources, 
e.g., internal memory, 
arithmetic operators, I/O 
busses that restrict the 
parallelization level of the 
proposed implementations. 
Last, we describe in details 
the mappings of the internal 

Section 3.1.2 – ECM Sketches 
Architecture 
 
Section 3.2.2 –Hayashi-Yoshida 
Algorithm Architecture 
 
Section 3.3.2 – Mutual Information 
Algorithm Architecture 
 
Section 3.4.2 –Transfer Entropy 
Algorithm Architecture 
 
Section 3.5.3 –SVM Algorithm 
Architecture 
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resources so that we achieve 
fine grained and/or coarse 
grained parallelization.  

Task 
3.3 

Move from special-
purpose translation 
towards a general 
mechanism for 
mapping stream 
processing 
algorithms on 
reconfigurable logic 
(MAXELER) 
 

Study of different platform 
interfaces for different 
algorithms.  Proposal for 
automated internal and 
external interface. 

Section 4  

Employ rapid system 
prototyping for 
algorithm mapping, 
so that 
advantages/disadva
ntages of each 
architecture to be 
understood from 
actual runs  

The algorithm mapping into 
hardware had tobe done 
iteratively, with working 
hardware designs in each 
case. In SVM we present 
theinitial and the final 
architectures. Also, in some 
algorithms, e.g. ECM 
sketches, we combined the 
implementation of previously 
presented algorithms in D3.1 
in order to implement an 
initial hardware-based 
architecture.  

Section 3.1.2 – ECM Sketches 
Architecture 
 
Sections 3.5.2, 3.5.3 – SVM 
architectures  
 
 

Partially 
reconfiguring the 
hardware to 
accommodate 
pipeline adaptation. 

We present an initial platform 
level design, which can be 
used as a part of the 
QualiMaster pipeline. We 
describe in more detail the 
integration of the Hayashi-
Yoshida algorithm and the 
Mutual Information algorithm 
on a common Maxeler node 
and how this system can be 
connected and 
―communicate ―with the 
Storm-based structure of the 
QualiMaster platform. 

Section 2 – Algorithms and System 
Design 
 

Task 
3.4 

Initial performance 
evaluation and 
testing results for the 
hardware-based 
solutions  

We present some initial 
performance gains vs. 
software (distributed or non-
distributed) solutions. We 
tested our implementations 
with variable size real-life 
and/or synthetic datasets. 

Section 3.1.3 – ECM Sketches 
Performance 
 
Section 3.2.3 –Hayashi-Yoshida 
Algorithm Performance 
 
Section 3.3.3 – Mutual Information 
Algorithm Performance 
 
Section 3.4.3 –Transfer Entropy 
Algorithm Performance 
 
Section 3.5.4 –SVM Algorithm 
Performance 

Table 1:Addressing D3.2 Objectives 
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In the next steps, we are going to focus on three main directions for the next Deliverable D3.3. 
First, we plan  to move on the second cycle of integrating the proposed hardware-based 
architectures in the QualiMaster pipeline infrastructure. In addition, we are going to explore the 
tradeoffs of mapping such algorithms on the adaptive pipeline and optimize it according to the user 
needs. Second, we are going to further explore and map computationally intensive algorithms, 
which combine processing of Social Network data and Economics, on hardware. Next, we are 
going to optimize further the proposed hardware-based architectures in order to achieve even 
further performance gains. Lastly, we are going to further explore and start establishing the 
automation tool that will provide optimized solutions for reconfigurable logic from high-level 
language descriptions. 
 

1.4 Addressing  Reviewers’ remarks 
 
The major remark for WP 3 from the reviewers’ comments is the way in which the hardware-
mapped algorithms are compared against software implementations in terms of performance. They 
have remarked that hardware implementation has to be compared against optimum software 
implementations and this has to be done for the proper datasets. Especially for the datasets from 
social networks the reviewers have recommended diversity, and not to restrict data sets just from 
Twitter. Below we describe in more details the reviewers’ remarks, while Table 2 clarifies the 
actions performed to address main reviewer’s remarks. 
 
Reviewers' remark 1: ―When comparing hardware and software implementations make sure that 
the software baselines used for comparison are state of the art implementations (in terms of 
efficiency).  However, it is likely the case that other algorithms become more appropriate –and 
efficient- solutions for prediction. We therefore encourage TSI to keep close track of this issue and 
implement the most promising methods for the task(s) at hand.” 
In order to address the reviewers’ remarks on D3.2, the WP3 QualiMaster partners have been in 
closer cooperation with WP5 to select the proper optimum implementations to compare against. 
For the SVM implementation, the D3.2 presented results are against the well know LibSVM 
implementation, which is used as a library for several platforms, including Matlab. The Count Min 
structure integrated with Exponential Histograms (ECM Sketch) was compared against the official 
software implementation. For Transfer Entropy we compare our own hardware and software 
implementations against the software presented in [23] which involves the same algorithmic 
implementation as well as similar time series datasets. Regarding our Mutual Information 
implementation there is no optimized software implementation for financial or social network data 
but only for image processing and so we compared the hardware implementations against WP5 
implementations. For the Hayashi Yoshida algorithm there was no official distribution or optimized 
implementation to our knowledge, therefore we compare hardware performance against WP5 
distributed software implementation.  
 
Reviewers' remark 2: “Evaluations should use larger collections of data. Try to move to evaluation 
designs with larger collections of data” 
In cooperation with WP5 the data sets were selected to be representative for the algorithms and 
the cases that QualiMaster aims to cover. We used both synthetic and real life datasets and in our 
future plans are to increase further the volumes of the processed datasets by providing more 
optimized hardware-based solutions.  
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Recommendation Specific action undertaken to 
answer 

Section where more details 
can be found 

Comparison of the hardware 
modules performance vs. the 
best optimized software 
solution 

We compared the performance 
of the hardware-based module 
vs. the corresponding software 
solutions under the same 
conditions (input datasets, 
input parameters). The 
software solutions that we 
used were the optimized –to 
the best of our knowledge- and 
in most of the cases we used 
the official software code of the 
algorithms.  

Section 3.1.3 – ECM Sketches 
Performance 
 
Section 3.2.3 –Hayashi-
Yoshida Algorithm 
Performance 
 
Section 3.3.3 – Mutual 
Information Algorithm 
Performance 
 
Section 3.4.3 –Transfer 
Entropy Algorithm 
Performance 
 
Section 3.5.4 –SVM Algorithm 
Performance 

Test the implemented system 
with a variety of high volume 
synthetic and real life datasets 
(especially for social datasets) 

The performance of the 
implemented system was 
analyzed using synthetic and 
real life datasets. We used big 
volumes of data according to 
the descriptions in DoW, and 
as they are our initial 
performance can be used as a 
basis for further performance 
achievements.  

Table 2:Addressing Reviewersô Remarks 

2 Algorithms and System Design 
The next step for the algorithms which have been designed and simulated in the previous 
deliverable (D3.1) was the algorithm implementation and performance evaluation at two different 
integration levels. The first level of integration is at the platform running the part of the hardware-
mapped algorithm, integrated with the software part. The second level integration is the algorithm 
running on the platform integrated with the QualiMaster pipeline. D3.2 focuses mainly in first level 
integration and how to create the infrastructure for the QualiMaster pipeline level.  

2.1 Platform Level Design 
 
In order to map an algorithm to hardware, several steps have to be followed. These steps have 
been presented extensively in D3.1, but for readability of this deliverable a brief summary will be 
presented. The steps that the designer follows entail algorithm study, design, and implementation. 
In order to study the algorithm the designer studies the nature of the algorithm and the size of 
inputs and outputs (called the dimensioning of the required implementation). Depending on these 
characteristics the designer should decide if some protocol implementation  (e.g. for I/O) or any 
other module is needed. The designer also studies the size of inputs and outputs in order to decide 
how to process these data, e.g. if all the data are available on-chip or external memory is required, 
etc. Subsequently the designer decides on the data sets that are representative for the algorithm. 
Depending on the data set, algorithms may vary in their statistical characteristics, the size of their 
implementation, or their parallelization characteristics. When the data set characteristics are 
determined the designer can get the right decisions and validate his design properly. Using these 
data sets, the next step is algorithm profiling, where the designer tries to find the most compute-
intensive part of the algorithm that it is going to be mapped to hardware. The designer also 
measures the ―memory footprint‖ of the algorithm (i.e. the memory requirements) in order to decide 
about data manipulation e.g. reorder data in main memory. The final step for the study procedure 
is to identify the important Data Structures and Operations. This step helps the designer to 
understand algorithmic parallelization and the type of the modules that are needed, e.g. 32- or 64- 
bits floating point arithmetic vs. fixed-point arithmetic.  
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The design procedure follows, where the designer has to do Top Down analysis where he/she 
analyzes the algorithm in abstract blocks, giving functionality description and description for their 
interface. Bottom Up modeling follows where the designer models the functionality and interfaces 
for each abstract block to build the subsystem. Then the designer debugs the model starting from 
small and scaling to bigger system blocks, using data from the given data sets. The last step for 
the design procedure is to do verification of the designed model, in which the designer uses the 
representative datasets in order to verify that his/her model works exactly the same as the original 
algorithm implementation. If a problem is detected at the design procedure, the designer has to go 
back, as needed, and repeat the process. 
The last step for the designer is the implementation process. The implementation is platform-
dependent and follows three steps. In the first step the designer has to implement the interface 
between the hardware and software. Such interfaces can include several layers and many of them 
are implemented by each platform vendor. For example, a PCI connection can exist between CPU 
and FPGA. There may be multiple such implementations and the designer has to select the given 
PCI options for his/her design. In higher levels of design the designer usually has to design several 
modules for the required interfaces. The following step is to integrate the model which has been 
built-in the design procedure as a module in the implementation procedure. Modeling of the 
algorithm has to be in the proper description language. Such a language can be a Hardware 
Description Languages can be Verilog or VHDL or in more sophisticated platforms such as the 
Maxeler System they can be Java or C with extensions.  The description language depends on the 
platform, as it is common for a platform to support more than one language. The last step in 
system building is validation. The same data sets that have been used on system design validation 
are used to validate the complete system running on the platform. For this procedure the output 
usually has the same look and feel and a direct comparison of the results can be done. Software 
and hardware systems should have identical results in order to validate the hardware design.   
The implemented system is modular in the sense that there are two distinct modules: software and 
hardware. Such a system can also be considered as a module for the QualiMaster pipeline and 
this is considered as the second level of integration. 
 

2.2 System Architecture 
In the deliverable D3.1 the design procedure has-been described, as well as how it was exploited 
for several algorithms: Support Vector Machine training, Hayashi - Yoshida correlation estimator, 
Count Min Sketch and Exponential Histogram extension were designed. In D3.2 the Mutual 
Information and Transfer Entropy estimators have been designed using the same methodology. 
The output of the corresponding hardware models is equivalent to the reference software and so 
the hardware modules can be used as ―hardware libraries‖: for the Maxeler Platform. As was 
described in D3.1 the Maxeler Platform architecture is a general purpose, Linux-based server with 
a powerful FPGA-based coprocessor. Algorithms begin their execution on the processor and the 
hardware libraries, i.e. the part of the algorithm that has been mapped to hardware are called as a 
procedure. When the hardware library produces the results it sends them back to the processor 
and algorithm execution continues from the point on. The user has no knowledge on algorithm 
execution as software remains the same, the only difference for the user should be the time for the 
algorithm execution. The system that is formed this way can be connected as a module to the 
QualiMaster pipeline.  
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Figure 1: Hayashi Yoshida and Mutual Information Topologies of the Storm based 
QualiMaster Pipeline 

Figure 1 shows the way that the Maxeler platform with the Hayashi - Yoshida or/and Mutual 
Information modules is used as a module of the QualiMaster pipeline. In this case the QualiMaster 
pipeline can use the Hayashi Yoshida Hardware topology or the Mutual Information Hardware 
topology of the Storm platform, or use both of them. Data are sent from the Pipeline Infrastructure 
to the Data Transmit Bolt. The Bolts for the Hardware-based Topologies are different from those of 
Software-based Topologies as they do not make any calculations and they just pass data to the 
Maxeler Server. The Maxeler server uses a TCP Server (sockets server) to get the data. The data 
are subsequently transmitted to the corresponding module in the Maxeler DFEs (FPGAs) which 
process them and produce the algorithm’s result. The results are transmitted back through the 
TCP Server and end up at the Data Receive Spout of the corresponding topology. As the Data 
Transmit Spout and the Data Receive Spout are different modules they can exist at different 
servers. Each Maxeler platform with 4 FPGAs can host up to 4 topologies. These topologies can 
serve the same or different algorithms. 
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3 Design of Architectures 

3.1 ECM-sketches 

3.1.1 Introduction 

The processing of continuous high-volume streams of data in real time is one of the goals of the 
QualiMaster project. There are many applications that need the building of concise, approximate 
sketch synopses of the input streams in real time. Such sketch structures typically require small 
space and update time, and they can be used to provide approximate query answers with 
guarantees on the quality of the approximation. ECM-sketch data structure [1] is a sketch synopsis 
that allows effective summarization of streaming data over both time-based and count-based 
sliding windows with probabilistic accuracy guarantees. 

3.1.1.1 Algorithm 

The ECM-sketch combines the well-known Count-Min sketch structure [2], which is used for 
conventional streams, with a state-of-the-art tool for sliding-window statistics, i.e. the Exponential 
Histograms [3].The input of the ECM-sketch data structure is a number of distributed data streams. 
The output of the ECM-sketch algorithm is a sliding window sketch synopsis that can provide 
provable, guaranteed error performance for queries, and can be employed to address a broad 
range of problems, such as maintaining frequency statistics, finding heavy hitters, and computing 
quintiles in the sliding-window model. 

As described above, the ECM-sketch combines the functionalities of Count-Min sketches and 
exponential histograms. Both of Count-Min and Exponential Histograms algorithms were 
analytically described and presented in Deliverable D3.1. This section presents a synopsis of these 
two algorithms. The Count-Min sketch is a popular and simple algorithm for summarizing data 
streams by providing decent summary statistics. The Count-Min sketches can be used for handling 
multiple and high-frequency data streams with surprisingly strong accuracy. A Count-Min sketch is 
composed of a set of d hash functions, h1(.), h2(.), ...., hd(.), and a 2-dimensional array of counters 
of width w and depth d. Hash function hj corresponds to row j of the array, mapping stream items to 
the range of [1... w]. Let CM[i,j] denote the counter at position (i,j) in the array. To add an item x of 

value vx in the Count-Min sketch, we increase the counters located at CM[hj(x), j] by vx, for j  ɴ[1 ... 
d]. A query for an item q is answered by hashing the item in each of the d rows and getting the 
minimum value of the corresponding cells. Note that hash collisions may cause estimation 

inaccuracies only overestimations. By setting d=ổln(1/δ)Ỗand w =ổe/εỖ, where e is the base of the 
natural logarithm, the structure enables point queries to be answered with an error of less than 
e||a||1, with a probability of at least 1-δ, where ||a||1 denotes the number of items seen in the 
stream. Similar results hold for range and inner product queries. 

On the other hand, the Exponential histograms (EHs) data structures are used by the ECM-sketch 
for answering queries over different data streams in a sliding-window model. Exponential 
histograms [3] are a deterministic structure, proposed to address the basic counting problem, i.e., 
for counting the number of true bits in the last N stream arrivals. The EHs is a method that breaks 
the sliding window range into smaller windows, called buckets or basic windows, to enable efficient 
maintenance of the statistics. Each bucket contains the aggregate statistics, i.e., number of arrivals 
and bucket bounds, for the corresponding sub-range. The buckets, which no longer overlap with 
the sliding window, expire and are discarded from the structure. To reduce the space 
requirements, exponential histograms maintain buckets of exponentially increasing sizes. The EHs 
access each data element at its arriving time and needs to be processed in real time. This 
constraint can be really challenging to be satisfied especially when there are irregularities and 
bursts data arrival rates. This problem is mainly due to insufficient time for the underlying CPU to 
process all stream elements or due to the memory bottleneck to process the queries.  

ECM-sketches combine the functionality of Count-Min sketches and sliding windows, and support 
both time-based and count-based sliding windows under the cash register model. The core 



QualiMaster Deliverable 3.2 

Page 14(of 47)  www.qualimaster.eu 

 

structure for the ECM-sketch algorithm is a modified Count-Min sketch. Count-Min sketches alone 
cannot handle the sliding window requirement. To address this limitation, ECM-sketches replace 
the Count-Min counters with sliding window structures, i.e. Exponential Histograms. Each counter 
is implemented as an exponential histogram, covering the last N time units, or the last N arrivals, 
depending on whether we need time-based or count-based sliding windows. 

In more details, adding an item x to the ECM structure is similar to the case of the standard Count-
Min sketches. The process for time-based sliding windows is depicted in Figure2. First, the 
counters CM [hj(x), j], where j є {1 . . . d}, corresponding to the d hash functions are detected. For 
each of the counters, we register the arrival of the item, and remove all expired information, i.e., 
the buckets of the exponential histogram that have no overlap with the sliding window range.  
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Figure 2: Example of adding a new element (x, 5) on an ECM sketch data structure. Hash 
Function is described by the equation: f(x) = (ax + b (mod p)) (mod w), where a,b are 

random numbers, p is a prime and w the number of exponential histograms mapped on 
each line of the ECM sketch 

ECM-sketches support point queries, inner product queries, and self-join queries, and there are 
derive probabilistic guarantees for the accuracy of the estimation. In our future plans, we aim at 
mapping such functionality on hardware in order to fully support the functionality of the ECM-
sketches for the QualiMaster infrastructure. 

3.1.1.2 Related Work 

This is the first attempt for mapping an algorithm that combines stream-processing with sketch 
data structures, like ECM-sketch algorithm, on reconfigurable hardware.  On the other hand, there 
are previous hardware-based works that implement stand-alone sketch data structure algorithms 
and stream processing algorithms on hardware in order to accelerate their performance.   
Lai et al. [4] presented an implementation of sketching techniques using an FPGA-based platform, 
for the purpose of anomaly detection. Their implementation scales easily to network data stream 
rates of 4Gbps. Lai and Byrd [5] implemented a Count-Min sketch on a low-power stream 
processor, which processes a throughput rate up to 13 Gbps according to their results. In [6], 
Thomas et al. describe their implementation on an IBM cell processor with 8 processing units. 
Their results show an almost 8-fold speedup vs. the single-thread sequential code. Wellem et al. in 
[7, 8] proposed to use Graphics Processing Units (GPUs) for offloading heavy sketch computations 
for network traffic change detection. Their experiment results showed that GPU can conduct fast 
change detection with query operation up to 9 million distinct keys per second and one order of 
magnitude faster than sequential software version. 
Fowers et al. [9] analyzed the sliding-window applications domain when executing on FPGAs, 
GPUs, and multicores. For each device, they presented optimization strategies and analyzed the 
cases, where each device was most effective. The results showed that FPGAs can achieve 
speedup of up to 11x and 57x compared to GPUs and multicores, respectively, while also using 
orders of magnitude less energy. Qian et al. in [10] presented a novel algorithm named M3Join, 
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which was implemented on an FPGA platform. The system needs only one scan over the data 
streams since different join queries share the intermediate results. The experimental results show 
that the hardware can accelerate join processing vastly. 

3.1.2 Architecture 

As described above, the ECM sketch is a compact structure combining a state-of-the-art sketching 
technique for data stream summarization, i.e. the Count-Min data structure, with deterministic 
sliding window synopses, i.e. the Exponential Histograms. This section presents a parallel 
reconfigurable-based architecture for the ECM-sketch data structure. The proposed architecture 
combines the hardware architectures for the Count-Min and the Exponential Histogram algorithms, 
which were presented in Deliverable D3.1. 
First, we present briefly the hardware implementation of the Count-Min data structure, as it was 
described in Deliverable 3.1. The hardware-based architecture mapped the update function for the 
Count-Min data structure on reconfigurable hardware, whereas the query functionality was 
implemented by the host CPU of the Maxeler server. The proposed architecture for the Count-Min 
data structure is presented in Figure 3. The implemented module takes as input streaming tuples 
that consist of an ID and a value. The hash functions are implemented as lookup tables in 
reconfigurable hardware, where the precomputed values have been loaded. The lookup tables 
take as input the streaming IDs and output the corresponding values from the hash functions. 
These values are used as index to the memories. Each memory module corresponds to a single 
row of the Count-Min data structure. The values are updated and stored again in Block Rams 
(BRAMs). When the processing finishes, the values of the memories return to the shared memory, 
which can be accessed by the CPU, too. The query processing takes place from the CPU. When a 
new query arrives, the CPU reads the CM sketch data structure from the shared memory and 
returns the query estimation. Concluding, it is important to clarify that the proposed architecture 
exploits the coarse grained parallelization that the hardware can offer by processing in parallel the 
d rows of a Count-Min data structure. 
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Figure 3: First hardware-based architecture for mapping Count-Min data structure 

 
Next, the proposed architecture for mapping the Exponential Histogram synopsis on hardware, as 
described in Deliverable D3.1, is presented. The proposed reconfigurable architecture takes as 
input either a stream of elements with values 1s or 0s with their corresponding timestamps or a 
stream of timestamps for estimation. The update process is separated into two stages: the update 
process and the check for expiry stage. At each new arrival of an element, two processes take 
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place independently and in parallel in all buckets of the Exponential Histogram. First, the expired 
elements are omitted from the buckets. Second, the new element that arrives to the first bucket is 
stored. At the same time, all the buckets of the data structure are updated with the new values (if 
there are new values) that come from their previous buckets with the pipeline process.  As shown 
in Figure 4, the buckets form a complex data structure like a 1-D array, which works like a complex 
shift-register. The shift process takes in two places concurrently. The first shift process takes 
places internally in each bucket. When a new value arrives at the input of a bucket all the previous 
values from the internal memories are shifted to the right memory module for one place. After the 
insertion completes in the bucket, there is a specific functionality, which checks for a merging 
condition for the last two elements of the bucket. If a new merged value needs to be passed to the 
next level, it is stored in the pipeline registers. The update process for the next bucket continues 
during the next clock cycle. The above process takes place at all the pipelined buckets 
concurrently and at each clock cycle. The important issue here is that our implementation is fully 
pipelined, which means that all levels can serve the insertion and merge processes at each clock 
cycle. In other words, our proposed system exploits the fine grained parallelization that the 
hardware can offer by executing concurrently and in parallel N, i.e. the number of ECM-sketch 
buckets, different processes, i.e. update and check for merge, at each clock cycle. 
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Figure 4: Reconfigurable-based architecture for mapping Exponential Histogram data 
structure 

 

As referred above, the ECM data structure combines the Count-Min data structure with the 
synopsis of the Exponential Histograms. Thus, the proposed architecture is a combination of the 
proposed reconfigurable architectures that were proposed in Deliverable D3.1. The proposed 
system is divided into three hardware-based entities: the Hash function module, the Count-Min 
module and the Exponential Histogram module. An initial hardware-based architecture for the ECM 
sketches is presented in Figure 5. 

The proposed implementation takes as input streaming tuples with a format (Stream_ID, value). 
Each time a new element arrives, the Stream_ID value enters the Hash function module. The 
Stream_ID value is used for assigning the input element to a single Exponential Histogram data 
structure at each one of the rows of the ECM sketch. The hash functions are implemented as 
lookup tables. Thus, the FPGA-based internal memories, i.e. BRAMs, are preloaded with the hash 
values. Next, each row of the Count-Min data structure is mapped as an Exponential Histogram 
data structure. The important issue is that the Exponential Histograms of each row were grouped 
into a single data structure with the same structure as the hardware-based EH data structure, 
which is presented in Figure 5. The main difference here is that each element internally is 
connected to a memory module, which keeps the values for the corresponding elements of the all 
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EHs of a row. Thus, as it is known that at each new element arrival only one EH of each row is 
updated and also at the proposed pipelined module each pipeline stage works independently to 
each other, then each pipeline stage can process at each clock cycle a different EH of the row. 
The proposed structure exploits the fine grained parallelization that the hardware can offer by 
processing in parallel N different values (like the number of total levels), which can belong to 
different EHs. Also, the proposed architecture exploits the coarse grained parallelization by 
processing each row of the EH independently. 
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Figure 5: Initial hardware-based architecture for mapping ECM on reconfigurable platform 

3.1.3 Performance 

This section presents the performance comparison between the hardware-based ECM sketch and 
the official software solution using the same input parameters. The software implementation, which 
was used for the experiments, is the official single-thread and fully optimized code that was 
provided by the TSI Software group, which was the first that presented the ECM-sketch data 
structure on streaming data [1]. The same input datasets and input parameters were used for both 
the experiments that took place in software and hardware. The software solution ran on platform 
with two 6core Intel Xeon @ 3.2 GHz, although it is single-threaded solution, with 50 GBs RAM. 
The reconfigurable architecture was mapped on a Maxeler MPC-C platform with four Virtex 6 
SX475T FPGA devices, two 6core Intel Xeon @ 3.2 GHz with 50GB RAM. For our performance 
evaluation we used only one CPU and one out of the four available FPGA devices. 

First, we need to clarify the size of the ECM-sketch data structure. In this first implementation only 
a single row of the ECM sketch data structure, as shown in Figure 5, was built in both the 
hardware-based and software-based experiments. Thus, our performance results show only the 
advantages of the fine grained parallelization that reconfigurable logic can offer. The parallelization 
of process for the hardware-based implementation for different rows of the ECM sketch is going to 
be presented in the next Deliverable D3.3 of the QualiMaster project. Next, we had to define the 
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size of the single row of the ECM-sketch, i.e. w parameter, and the size of the increasing sized 
non-overlapping buckets for each one the internal ECM sketches. These parameters are defined 
by two factors: ε and δ, where δ is the probability for answering a query over the ECM sketch 
within an error factor ε. In addition as far as the bucket size, the first bucket has size k+1 while the 
rest buckets have size k/2 + 1. The variable k is bounded by the 1/ε value. According to [1], the 
typical values for both ε and δ are in the space [0.05, 0.2]. Our proposed architecture is fully 
parameterizable, which means that we can change the dimensions of the ECM sketch according to 
the needs of the application. Also, the proposed architecture maps the complete update 
functionality for the ECM sketch on reconfigurable logic. Last, for the hardware-based experiments 
we built a simple software solution that is used for creating the proper structures, which consist of 
the input datasets and which are passed to the reconfigurable part for updating the ECM-sketch 
infrastructure.  

Hardware-based ECM-sketches were evaluated with a set of extensive experiments, using large 
real-world and synthetic datasets. The performance results and the increase on the processing of 
streaming rates are presented in Table3. The results verify the high performance of the hardware-
based structure. We used the values δ = 0.4, ε = 0.05 and window size = 2000000 for both 
software and hardware. Thus, the implemented structures keep information for a time window up 
to 2000000 time units. As Table 3 shows, the hardware based ECM sketch data structure can 
process streaming data with frequency almost up to 10 times higher than the software centralized 
solution using low resource utilization, i.e. up to 20% for a single FPGA device. Also, it is important 
to mention that this implementation of the ECM sketch uses only the fine grained parallelization 
that hardware can offer. 

The performance advantages for the hardware-based solution come from the complexity cost of 
the software-based ECM sketch update process. In more details, the bottleneck in case of the 
software implementation is the cost for the update process, which is amortized O(1) per element. 
On the other hand, hardware takes advantage of the fine-grained parallelization leading to a 
standard complexity O(1) for each new element.  

 

Dataset #Events 

SW Update HW Update 
Update Rate 

Increase Execution 
Time (sec) 

Update Rate 
(#Elements/sec) 

Execution 
Time (sec) 

Update Rate 
(#Elements/sec) 

Random_1 108 12.30 8129420 1.32 75707894 9.3x 

Random_2 108 12.31 8124136 1.36 73426011 9.0x 

SNMP 3.1*107 3.81 8152200 0.45 69209585 8.5x 

IPS 108 12.86 7776654 1.31 76431383 9.8x 

WC 108 11.97 8353521 1.33 75565332 9.0x 

Table 3: Performance results for updating the hardware and software implementations of 
ECM data structure 

Our next steps will focus on increasing the reliability of the ECM sketch on answering correctly a 
query, by decreasing the parameter δ; thus, more parallel processing elements will be mapped on 
hardware, which means that more independent lines of the ECM sketch will be processed in 
parallel. This scheme is going to increase the coarse grained parallelization, so the performance 
gains from the hardware solution will increase. Also, the implemented architecture will be 
expanded to more than a single FPGA-device in order to serve ECM sketches with even bigger 
time window size. Next, the estimation process will be implemented and supported by the 
hardware-based ECM sketch, as up to now only the update process is supported by our hardware-
based solution. Last, the increase in coarse grain parallelization will offer a performance 
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comparison between the distributed Storm-based solution of the ECM-sketch and the hardware-
based multi-FPGA with higher dimensions for the ECM sketch.  

3.2 Hayashi-Yoshida Correlation 

Most financial models for modelling risks on economics are based on the linear correlation, which 
is used as a measure of dependence. The QualiMaster project focuses on methods that will 
improve the risk analysis on financial data by monitoring fine granular data streams from stock 
markets for event detection. The correlation estimator can be applied directly on series of stock 
prices. This section describes a novel hardware-based system for the well-known Hayashi-Yoshida 
Correlation Estimator [11].  

3.2.1 Related work 

There are many works that implement various correlation estimators on reconfigurable hardware. 
Ureña et al. in [12] described the design and development of a correlation detector a low-cost 
reconfigurable device. Fort et al. presented [13] an FPGA implementation of a synchronization 
system using both autocorrelation and cross-correlation. Their results showed that FPGA devices 
can efficiently map cross-correlation synchronizers. Lindoso et al. in [14] presented an FPGA-
based implementation of an image correlation algorithm, i.e. Zero-Mean Normalized Cross 
Correlation. The experimental results demonstrated that FPGAs improved performance by at least 
two orders of magnitude with respect to software implementations on a high-end computer. Liu et 
al. in [15] presented a multi-channel real-time correlation system on a FPGA-based platform. Their 
system offered sliding correlation processing. Their proposed system achieved higher flexibility 
and accurate data-flow control when compared to previous traditional parallel processing 
architectures. 

3.2.2 System Architecture 

The proposed architecture is a software-hardware co-design system, as presented in Figure 6. The 
software part receives the streaming input data, it updates the data structures with the new data 
and it streams out the results, while the hardware part implements all the computations. The 
software code uses multiple threads. As shown in Figure 1, the Storm Topology for the Hayashi-
Yoshida algorithm consists of two main components, i.e. the data transmit Bolt and the data 
receive Spout. These components run independently and concurrently, thus we used multiple 
concurrently running threads for receiving the streaming data, updating the internal data structures 
and transmitting streaming results back. The main difference between the new proposed 
architecture and the previous one, which was proposed in Deliverable D3.1, is the new architecture 
for the hardware-based implementation of the Hayashi-Yoshida Correlation Estimator that is 
presented in the next section.  
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Figure 6: Top level Implementation for HW-based Hayashi-Yoshida Correlation Estimator 

3.2.2.1 Software-based Hayashi-Yoshida Correlation subsystem 

This section presents the software part of the proposed Hayashi-Yoshida correlation estimator. 
First, the system starts with the initialization of the internal data structures and the correlation 
matrix that is stored in the shared memory of the Maxeler platform. Also, the system establishes a 
TCP connection with the ―outside‖ world, which is used for receiving the streaming data and 
transmitting the final results. Next, three independent parallel running threads are created. The first 
thread is used as a communication interface between the Hayashi-Yoshida system and the 
―outside‖ world. Also, it is used for parsing the streaming input data. The second thread reads all 
the arrived transactions for a single timestamp and updates the corresponding data structures. 
Then, these data structures are streamed to the reconfigurable part of the system, which 
calculates the new coefficients for the HY correlation estimator. Last, the third thread is used for 
reading the computed Hayashi-Yoshida coefficients from the shared memory and it calculates the 
final correlation values, which are streamed out via TCP connection.  

3.2.2.2 Hardware-based Hayashi-Yoshida Correlation subsystem 

This section presents the new proposed hardware-based architecture for the Hayashi-Yoshida 
correlation estimator subsystem. As presented in Deliverable D3.1, we proposed a new additive 
method for calculating the HY estimator over a specific time window using the streaming nature of 
the algorithm. Our proposed method offered lower complexity than the initially repetitive algorithm.  

The reconfigurable part of the system, i.e. HY Coefficient Estimator module, calculates the HY 
coefficients in an additive way. It calculates the HY estimation value for each one of the market 
stocks pairs. The new architecture uses a different algorithmic scheme for calculating the Hayashi-
Yoshida coefficients. In more details, the HY Coefficient Estimator module consists of two smaller 
modules that calculate independently and concurrently the correlation coefficients at the start and 
at the end of the processing sliding time window. Next, the correlation coefficient from the starting 
point of the processing window is subtracted from the correlation coefficient of the expiring point of 
the processing window. The result of the subtraction is added to the correlation coefficient from the 
previous timestamp. The final result is the new correlation coefficient for the pair of the processing 
stock markets. Thus, in more details, we add the correlation value that comes from the new 
transactions intervals and we subtract the correlation value that comes from the expired 
transaction intervals, i.e. the transaction intervals that move outside the processing window, from 
the previous correlation factor at each timestamp. Last, the new correlation value is sent back to 
the shared memory and it is streamed again at the next timestamp for the calculation of the new 
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correlation coefficient for the next timestamp. The new hardware-based Hayashi-Yoshida 
correlation architecture of the two parallel modules is presented in Figure 7.  
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Figure 7: HW-based Hayashi-Yoshida Coefficient Estimator subsystem  

3.2.3 Performance 

This section presents the performance achievements for the hardware-based Hayashi-Yoshida 
Correlation Estimator on a hybrid platform. The proposed hardware-based system was mapped on 
a Maxeler MPC-C platform with four Virtex 6 SX475T FPGA devices, 24 CPUs @ 1.6 MHz and 64 
GBs RAM. For our performance evaluation we used only one CPU and one out of the four 
available FPGA devices with low resource utilization, i.e., only 31% of BRAM resources, 27% of 
Logic resources and 1% of DSP resources were utilized. Moreover, the system includes a single 
node, which was used for the I/O operations using local network. The node consists of a Dual-core 
AMD CPU @ 2.1 GHz and 8 GB RAM. 

The implemented system was tested with synthetic and real life input datasets. As the proposed 
implementation follows the streaming formulation, the size of the processing time window is 
irrelevant to the performance of the implemented system, thus we used time window size with 1 
hour, i.e. 3600 seconds and advance 1 sec, i.e. the smallest possible advance time. Thus, the 
system can calculate the correlation of the input stock markets in real time. 
First, Table 4 presents the execution time, i.e., the processing and the I/O time, for the 
reconfigurable part of the hybrid platform for various input size datasets. During these tests, we 
used the Storm Topology that is presented in Figure 1, for the I/O operations and the MPC-C 
server for the computation of the stock markets’ correlation for various input size datasets. It is 
important to mention that the reconfigurable architecture was mapped on single out of the four 
existing four FPGA devices. It is obvious that reconfigurable system using a single FPGA device 
and a single CPU node for I/O issues can compute the correlation metric for all the pairs of up to 
5000 stock markets in less than 1 second, including the I/O time overhead. Thus, the proposed 
single-FPGA system can process in real time up to 5000 stock markets over a sliding time window, 
taking into account that the stock markets values arrive at a frequency of 1 second. 
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#Stock Markets 
Processing Time overhead per 

timestamp 
(timestamp = 1 second) 

80 0.002 sec 

100 0.005 sec 

500 0.017 sec 

1000 0.049 sec 

5000 0.869 sec 

Table 4: Processing time per ñtimestampò for the proposed reconfigurable-based system 

Next, we compared the performance of the software-based distributed Storm solution vs. the 
hardware-proposed solution for exactly the same input parameters and various input datasets. The 
Apache Storm system was mapped on a cluster with 7 nodes, where each node consists of a 
Dual-core AMD CPU @ 2.1 GHz and 8 GB RAM. Table 5 summarized the results. As the table 
indicates, the Storm-based solution can compute the correlation up to 500 stock markets when a 
cluster with 7 high end nodes is used. On the other hand, a hybrid platform with a single cluster 
node, which is used for the I/O operations and a high end FPGA device, can process up to 5000 
stock markets in real time. This means, that a single FPGA can process about 10 times greater 
number of stock markets than a cluster of seven nodes, which means that FPGA-based system 
can calculate about 100 times more correlation values than a distributed cluster-based solution 
taking into account that the correlation of all the pairs of the input stock market is calculated. 

# Stock Markets 

Hybrid Platform Configuration for 
Real Time Processing 

1 Cluster node and MPC-C 
server with a single FPGA 

device utilized 

Storm-
based 

Platform 

Real-life dataset 
(80 stock markets) 

√ 
1 Cluster 

Node 

100 √ 
1 Cluster 

Node 

250 √ 
4 Cluster 
Nodes 

500 √ 
7 Cluster 
Nodes 

1000 √ X* 

5000 √ X* 

Table 5: Real Time processing for standalone operating mode for the  
Storm-based solution vs. FPGA-based based solution (* These datasets cannot be 

processed in real time due to communication bandwidth limitations among the cluster 
nodes) 

Taking into account the results that are presented above, we conclude to the remarks that the 
bottleneck in case of the Storm based solution is the communication bandwidth between the 
cluster nodes. The parallel processing over a Storm-based cluster includes high communication 
workloads, which lead to lower performance results. On the other hand, the hardware-based 
implementation, at least this second proposed solution, uses a non-parallel processing solution 
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and it takes advantage of the high streaming rates that Maxeler nodes can offer and the fine 
grained processing parallelization that can take place internally in the FPGA devices. 

As shown, the implemented system offers really good performance for a high number of stock 
markets. Our future plans will focus on increasing the coarse grained parallelization of the system 
by mapping parallel processing proposed modules on all the available FPGA devices of the 
Maxeler server. Thus, the next generation of the reconfigurable Hayashi-Yoshida Correlation 
system will increase the number of the stock markets that will be processed in real time. 
 

3.3 Mutual Information 

3.3.1 Introduction 

In this section we present a brief tutorial on Mutual Information (MI) as formulated in [16]. Mutual 
Information (MI) determines how similar the joint distribution p(X, Y) is to the products of factored 
marginal distribution p(X)p(Y). For QualiMaster Mutual Information can be used in order to 
measure dependencies between different stocks, considering their price values as time series.  

3.3.1.1 Algorithm 

Mutual information I(X; Y) computes the amount of information a random variable includes about 
another random variable, or in terms of entropy it is the decrease of uncertainty in a random 
variable due to existing knowledge about the other. For example, suppose discrete random 
variable X represents the roll of a fair six-sided dice, whereas Y shows whether the roll is odd or 
even. Then, it is clear that the two random variables share information, as by observing one we 
receive knowledge about the other. On the other hand, if we have a third discrete random variable 
Z denoting the role of another dice, then variables X and Z or Y and Z do not share mutual 
information. More formally, for a pair of discrete random variables X, Y with joint probability 
function p(x,y) and marginal probability functions p(x)and p(y) respectively, the mutual information 
I(X;Y) is the relative entropy between the joint distribution and the product distribution: 

Ὅ(ὢ;ὣ) = В ὴὼ,ώὰέὫ
ὴὼ,ώ

ὴὼ ώὼ,ώ (1) 

Mutual Information is a measure of the inherent dependence expressed in the joint distribution of X 
and Y relative to the joint distribution of X and Y under the assumption of independence. Mutual 
information therefore measures dependence in the following sense: I(X; Y) = 0 if and only ifX and Y 
are independent random variables. This is easy to see in one direction: if X and Y are independent, 
then p(x,y) = p(x) p(y), and therefore: 

ὰέὫ
ὴὼ,ώ

ὴὼ ώ
= ὰέὫ1 = 0    (2) 

Note that mutual information is symmetric in the arguments, that is I(X;Y) = I(Y;X). Furthermore, it 
is a non-negative measure, which yields zero I(X;Y) = 0 if and only if random variables X and Y are 
independent. Also if the used log base is 2, the units of mutual information are bits. The flowchart 
that corresponds to the MI calculation is shown on the following figure. First the pdf estimation is 
done and the MI is calculated. 
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Figure 8:  Mutual Information basic flowchart 

3.3.1.2 Probability Density Function Estimation 

Mutual Information takes as input the pdfs, p(x), p(y) and p(x, y) as shown in equation (1). 
Histograms were used for pdf estimation. A histogram is a graphical representation of the 
distribution of numerical data. It is an estimate of the probability distribution of a continuous 
variable and was first introduced by Karl Pearson [21]. To construct a histogram, the first step is to 
"Bin" the range of values—that is, divide the entire range of values into a series of small intervals—
and then count how many values fall into each interval. 
Basically the value range of the X and Y random variables is divided into R segments, with R being 
the number of Bins of the histogram. Then each value of the time series is classified into one of the 
R Bins ant the value of that Bin is incremented by 1. For p(x, y) the result is a 2-D array and the 
pair of X, Y values, each timestamp, is classified in one of the RxR Bins and its value is 
incremented by 1. The result is the estimated pdfs for X and Y and X, Y.   
There exist more methods for pdf estimation like Kernel Density Estimation (KDE) or K-Nearest 
Neighbour (KNN) that will be considered at the next stage of implementation for the MI algorithm.   
 

3.3.1.3 Related Work 

Only a few hardware-based approaches have been proposed for Mutual Information, which will be 
presented in this section.  
An FPGA-based approach for Mutual Information computation was presented in [18] by Castro-
Pareja and Shekhar. The proposed architecture was called FAIR-II and achieved hardware 
acceleration of mutual information-based image registration. More specifically, they aim at real-
time computation of image registration but without the use of supercomputers. Furthermore, their 
architecture consists of two discrete steps both of which are carried out on hardware. In the first 
step hardware creates the mutual and individual histograms based on an algorithm that transforms 
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the floating image’s coordinates to the respective reference ones with the use of Partial volume 
interpolation. Subsequently, during the second part of their approach the partial joint histogram 
values are sent to the accumulator and the total mutual information calculation is derived. Their 
system was tested on an Altera Stratix EP1S40 FPGA and it was able to process50 million 
reference image voxels per second. Compared to an optimized software implementation on a 3.2-
GHz Xeon workstation with 1 GB of 266 MHz DDRAM FAIR-IIdelivered x30 speedup for linear 
registration and x100 speedup for elastic registration. 
As for implementations that use GPUs in order to accelerate MI calculation there are some works 
that achieve good results with respect to processing time.  In 2007 Shams and Barnes presented 
an efficient method for mutual information computation between images for NVIDIA compatible 
devices [19]. The execution flow of their approach is as follows. First, as a pre-processing step 
they transform the 2Djoint histogram calculation to a 1D code. Then, the probability mass function 
calculation is distributed to L thread blocks each with N threads. Each block maintains a partial 
histogram of its own in the global memory for the portion of the input data assigned to the block. 
Partial histograms are finally summed up using a multithreaded reduction function. The 
experimental results of the aforementioned implementation were carried out on an NVIDIA 8800 
GTX platform. Moreover, results indicated that in the case of a3D image with approximately 7x106 
voxels and 256 threads the GPU-based registration was around 25 times more efficient. 
Another approach was presented in [20] by Lin and Medioni, who proposed a GPU implementation 
to compute both mutual information and its derivatives. More specifically, in order to estimate the 
probability density for the mutual information computation they use the Parzen Window method, 
which directly utilizes the samples drawn from an unknown distribution and applies the Gaussian 
Mixture model to estimate the probability’s density. Furthermore, they address the image 
registration problem by estimating the transformation T that best aligns two images. In order to do 
so they maximize mutual information by approximating its derivative with respect to T. The 
opportunity for parallelism is offered by the inner summations in the required equations since the 
statistics associated with each element are independent from the ones of the others, as well as 
parallel shared memory access. The experiments of the aforementioned work were conducted on 
an Nvidia GeForce 8800 GTX platform. For 1000 samples the computation time for both mutual 
information and its derivatives is reduced up to a factor of 170 and400 respectively compared with 
a work station level CPU. 
 

3.3.1.4 Profiling 

Mutual Information algorithm takes as input two time series representing two random variables. For 
QualiMaster these time series are stock price values. In order to calculate the MI between two 
random variables the Probability Density Functions have to be estimated. In this work histograms 
were used for pdf estimation. The output of the histograms is p(x), p(y) and p(x, y). These functions 
are represented by 1-D arrays for p(x) and p(y), and a 2-D array for p(x, y). The quality of the pdf 
depends on the number of Bins selected for the application. The execution time of the pdf 
estimation increases with the amount of input data that is the length of the time series. On the 
Table6 below we present the pdf estimation processing time for different sizes of time series 
length. 

 

Time Series Length Execution time (ms) 

10000 0. 23 

100000 1.53 

1000000 14.3 

10000000 143 

Table 6:Pdf estimation 

As shown on the previous table the pdf estimation execution time increases linearly with the 
increase of the input data. 
As mentioned above, the quality of the pdf increases with the number of Bins, but increasing the 
number of Bins leads to squared increase of the execution time for MI calculation. MI iterates over 
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the pdfs based on equation (1), which has a computational complexity of O(n2). The Table7 below 
presents the relation between the number of Bins and the MI Sum execution time. 

 

Num. Of Bins Execution time (ms) 

100 0.11 

500 24.5 

1000 98.2 

5000 2460 

10000 9870 

Table 7:MI calculation 

Taking into account both Tables 6 and 7, the MI calculation execution time is the most time 
consuming part of the MI calculation software. Although when a small number of Bins is used and 
a very high amount of time series data pdf estimation can become more time consuming than MI 
calculation, e.g. using 500 Bins (24.5 ms) and time series with 107 length (143 ms). Even though 
pdf estimation can become more time consuming than MI calculation for certain parameters, it is 
not the average case. On the average case, e.g. 1000 Bins and 105 time series length, pdf 
estimation is 2% of the execution time. Because MI calculation (equation (1)) takes 98% of the 
total execution time, it was chosen to be implemented on hardware.   
 

3.3.2 Architecture 

The MI system architecture is shown on Figure 9. The MI processing is divided in two parts, the 
probability density function (pdf) estimation and the calculation of Mutual Information from the 
function shown above (1). The pdf estimation, based on histograms, is calculated on software as it 
is not computationally intensive as it is presented on the profiling section.  
The pdfs, p(x, y), p(x), p(y), are streamed into hardware for the calculation of Mutual Information. 
The length of the streams depends on the number of Bins that is R2. Each stream of the p(x) and 
p(y) is streamed R times, with R being the number of Bins, in order to match the size of p(x, y). In 
order to stream the data into the DFEs in the correct order either the values in p(x) or p(y) have to 
be copied R times each, while the other is streamed R times. The processing is fully pipelined 
meaning that each clock cycle the appropriate values of p(x, y), p(x) and p(y) have to arrive in the 
cores at the same time for the correct results to be produced. 
The MI calculation utilizes 3 of the 8 streams available on the Maxeler System. In order to further 
accelerate the application the pdfs were divided by 2, providing 6 streams, 5 streams more 
precisely. Basically the stream that is streamed R times is now streamed R/2 times. Also 2 
hardware cores are responsible of calculating the partial MI results. This allowed more bandwidth 
utilization and thus even better performance. Also, even with two cores the FPGA resource 
Utilization remains at about 10% of the total available resources. This allows the implementation of 
even more MI calculation cores. The problem is that there are not enough PCI streams that could 
be used to feed more than 2 cores. The target is to increase the throughput/parallelization by 
utilizing the LMEM bandwidth. The performance results for both the single and double core 
architectures are presented in the next section.  
The results from the hardware cores are streamed and accumulated on software to produce the 
appropriate MI final result. Calculating the final result on hardware would result in reduced 
performance as it would disrupt the pipeline, as it would need controlled inputs in order to 
implement the Sum function which is presented more thoroughly below.  Accumulating the partial 
results on software is the most efficient solution for the Maxeler system.   
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Figure 9:Mutual Information basic System Architecture 

 
The basic hardware architecture for the calculation of MI (equation (1)) is presented on Figure 10. 
This architecture represents each one of the MI1 and MI2 cores shown in Figure 9. The 
architecture is fully pipelined, allowing an iteration of the Sum to be calculated every clock cycle. 
The three pdfs are streamed to the pipeline, one value per pdf every clock cycle, are processed in 
the pipeline and the results are accumulated in the Sum module. 
Single precision cores were used for the calculations and most of the architecture modules, except 
the log approx. and Sum modules, are basic floating point hardware cores for the mathematic 
operations. The two components that differ, the log approx. and Sum module, are further analyzed 
in the following sections. 
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Figure 10: Hardware Architecture 

3.3.2.1 Log approximation 

The logarithm of base 2 approximation component was designed based on the implementation 
presented on [17]: 

 

ὼ= 1 + άὼ 2Ὡᾀ, 
ὰέὫ2 ὼ = Ὡὼ+ ὰέὫ2 1 + άὼ  
Ὅὼ= (Ὡὼ+ ὄ)ὒ+ άὼὒ, 
Ὅὼ/ ὒ ὄ= Ὡὼ+ άὼ, 

ὰέὫ2 ὼ = Ὅὼ/ ὒ ὄ+ ὰέὫ2 1 + άὼ άὼ 
 
This approach was followed as it provided the most efficient implementation with respect to 
resources utilization and calculation overhead. Also the relative accuracy of this log 
implementation is about 2.09352e-05. The problem with such relative accuracy is that the error is 
accumulated in equation (1) leading to more significant error rates of about 1.0564e-2 for large 
number of bins. 
Two other methods were also considered and tested for the implementation of logarithm, Taylor 
Series and Look Up Tables. The LUTs provide relatively good results with respect of accuracy, but 
is restricted by the BRAM resources. For very large datasets and large number of bins the pdfs 
take very small values which cannot be addressed by the LUT method. The Taylor Series have 
about the same restrictions. They provide very good accuracy with small resources utilization only 
if the inputs are close to a certain value. If a broader input needs to be addressed Taylor Series 
need a lot of iterations in order to converge, and thus utilizing a lot more resources as Maxeler 
hardware does not allow an efficient way for feedback/optimization operations and the iterations 
have to be unrolled. 
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3.3.2.2 Sum 

The Sum module is responsible of accumulating the partial results. The floating point adder that 
accumulates the results needs 13 clock cycles in order to produce the result, but is fully pipelined. 
The feedback is done by using a 13 slot buffer. This means that the first result is reported 13 clock 
cycles after the inputs are inserted in the adder. In order to produce the correct result from 
hardware one value for each of the p(x,y), p(x) and p(y), should be streamed every 13 clock 
cycles, which would make the implementation very slow, exactly 13 times slower. In order to avoid 
this drawback data are streamed every clock cycle and are accumulated and stored in the buffer. 
Basically the first slot of the buffer contains the results for the 1st+14th+27th and so on iterations, the 
second the accumulation of the 2nd +15th+28th and so on iterations. This applies in all the 13 slots 
of the feedback buffer. 
At the end of the calculation the last 13 results are streamed to the CPU where they are 
accumulated in order to produce the correct results. Finally the Sum of the partial results of the two 
cores is done on software as mentioned above. Basically 26 partial results, 13 from each core, are 
accumulated to produce the final MI. 
 

3.3.3 Performance 

 
In this section the performance results for the implementations of the Mutual Information algorithm 
on both software and hardware are presented. The platform, where both software- and hardware-
based experiments ran, was an MPC-C series Maxeler System, with two 6core Intel Xeon @ 3.2 
GHz with 50GB RAM, and 4 DFEs (XCV6475T FPGAs) connected via PCI with the CPU, with a 
2GB/s bandwidth. Also each DFE has a dedicated 24GB of RAM. The maximum bandwidth can be 
achieved by using the 8 streams available for each DFE. Each stream has a maximum bandwidth 
of 250MB/s.  

3.3.3.1 Hardware vs. Software  

The results of the comparison of the hardware and software implementations are presented on the 
following Tables. In Table 8 the comparison of the software execution time with the hardware 
execution time with 1 MI calculation core is presented, while Table 9 presents the same 
comparison but with 2 cores running on the hardware. The experiments presented here and in the 
next section were done using 100.000 length time series for two random variables. The random 
variables represent stocks, while the time series are their values over time. The datasets were 
taken from the data provided by Spring. The software used in these experiments is the equivalent 
single thread implementation of the algorithm. It is written in C and the pdf estimation part is also 
used on the hardware implementation in the host code segment. As a first conclusion by the 
results it is clear that for small amounts of Bins the software implementation is much faster than 
the hardware. This happens because the hardware function call and the initialization of the 
streams need 5 - 30ms. On the other hand as the number of bins increases, the hardware 
performance increases, as the initialization time is a small fraction of the calculation time. The first 
architecture (1 MI calculation core) achieves a performance increase of up to 5.8x. For this 
implementation 3 of the 8 streams to the DFEs were used and only 5% of the available FPGA 
resources. 

 

Num of Bins SW(sec) HW1(sec) SpeedUp 

100 0.002 0.031 0.06 

500 0.025 0.036 0.69 

1000 0.095 0.046 2 

2000 0.4 0.1 4 

5000 2.5 0.45 5.6 

10000 10.3 1.8 5.7 

20000 41.5 7.1 5.8 

40000 159 30.5 5.3 

Table 8:SW vs. HW MI calculation time with 1 core 
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As mentioned above, there are 8 streams available for data streaming between the CPU and the 
DFE. In order to utilize more of the available bandwidth the pdfs were divided by two, which allows 
the use of 6 streams. Actually 5 streams are utilized as the pdf that was streamed R times is now 
streamed R/2 times instead. Also by using 2 processing cores the processing power of the 
hardware is doubled. This improvement allowed an increase on performance of up to 9.4x for large 
number of Bins. Equation (1) allows the parallelization of the algorithm. The maximum available 
bandwidth is the limiting factor as the 2 core implementation utilizes only 10% of the available 
FPGA resources while using 5 of the 8 available streams.  
 

Num of Bins SW(sec) HW2(sec) SpeedUp 

100 0.002 0.036 0.05 

500 0.025 0.037 0.68 

1000 0.095 0.047 2 

2000 0.4 0.077 5.2 

5000 2.5 0.31 8 

10000 10.3 1.1 9.4 

20000 41.5 4.9 8.5 

40000 159 19.7 8,1 

Table 9:SW vs. HW MI calculation time with 2 cores 

  

3.3.3.2 Hardware Implementations comparison  

 
In this section the comparison of the performance of the single and double core architectures is 
presented. On Table 10 the execution time of the different architectures is compared. As shown in 
the Table due to the initialization time the 2 core architecture is slower for small number of bins. 
The initialization of 2 more streams leads to this increase in execution time. While the number of 
bins increases, the increase in performance approaches 1.5x, as the initialization overhead 
becomes a small fraction of the total execution time. The increase in performance is less than 2, 
even if the processing in hardware is doubled, because preprocessing in software is needed in 
order to split the pdfs in half.  

 

Num of Bins HW1(sec) HW2(sec) SpeedUp 

100 0.031 0.036 0.86 

500 0.036 0.037 0.97 

1000 0.046 0.047 0.98 

2000 0.1 0.077 1.3 

5000 0.45 0.31 1.45 

10000 1.8 1.1 1.6 

20000 7.1 4.9 1.45 

40000 30.5 19.7 1.55 

Table 10:MI 1core Vs 2core HW implementations 

 
The throughput presented on Table 11 is not the real PCI throughput but the application 
throughput, as in the time factor the initialization of the DFE is taken into account. For small 
number of bins the throughput of the 2 core implementation is lower than the 1 core, as the 
initialization time remains the main factor of the execution time. With the increase of the number of 
bins the throughput reaches up to 900MB/s for the 2 core architecture approaching the theoretical 
PCI bandwidth for 5 streams, which is 1250MB/s. Also the 1 core architecture approaches the 
theoretical bandwidth, which is 750MB/s for 3 streams, by achieving up to 670MB/s. As mentioned 
above the throughput calculated is the application throughput and not only the hardware call 
throughput. 
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Num of Bins HW1(MB/sec) HW2(MB/sec) 

100 3.8 2.8 

500 83 68 

1000 261 213 

2000 480 519 

5000 667 806 

10000 667 909 

20000 676 816 

40000 629   812 

Table 11:Throughput comparison 3 streams ïvs. 6 streams 

In 3.3.1.3 three implementations are presented, that achieve better performance increase than our 
implementation. It is not safe to compare this implementation with the ones presented in [18], [19], 
and [20] as the speedups mentioned consider different applications and Image related datasets. 
Image values could be represented with 8 bits allowing the better utilization of the available 
bandwidth, which would allow our implementation to achieve even greater performance.  
 

3.4 Transfer Entropy 

3.4.1 Introduction 

In this section we present a brief tutorial on Transfer Entropy (TE) as formulated in [22].For 
QualiMaster Transfer Entropy can be used in order to measure information transfer between stock 
markets and in social media.  
 

3.4.1.1 Algorithm 

Transfer entropy is a non-parametric statistic measuring the amount of directed (time-asymmetric) 
transfer of information between two random processes. Transfer entropy from a process X to 
another process Y is the amount of uncertainty reduced in future values of Y by knowing the past 
values of X given past values of Y. The transfer entropy can be written as: 

ὝὢO ὣ= В ὴώὲ+ 1,ώὲ,ὼὲὰέὫ
ὴώὲ+ 1,ώὲ,ὼὲὴώὲ

ὴώὲ+ 1,ώὲ ώὲ,ὼὲ
ώὲ+ 1,ώὲ,ὼὲ (2) 

Transfer Entropy from Y to X  is written as: 

ὝὢO ὣ= В ὴώὲ+ 1,ώὲ,ὼὲὰέὫ
ὴώὲ+ 1,ώὲ,ὼὲὴώὲ

ὴώὲ+ 1,ώὲ ώὲ,ὼὲ
ώὲ+ 1,ώὲ,ὼὲ (2) 

Transfer Entropy is able to distinguish effectively driving and responding elements and to detect 
asymmetry in the interaction of subsystems. Transfer entropy is conditional Mutual Information [25] 

with the history of the influenced variable in the condition. Transfer entropy reduces to 
Granger causality for vector auto-regressive processes. Hence, it is advantageous when the model 
assumption of Granger causality doesn't hold, for example, analysis of non-linear signals. 
However, it usually requires more samples for accurate estimation. While it was originally defined 
for bivariate analysis, transfer entropy has been extended to multivariate forms, either conditioning 
on other potential source variables or considering transfer from a collection of sources, although 
these forms require more samples again.. The flowchart that corresponds to the TE calculation is 
shown on the following figure. First the pdf estimation is done and the TE is calculated. 
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Figure 11:  Transfer Entropy basic flowchart 

3.4.1.2 Related Work 

 
Transfer Entropy calculation is a computationally intensive algorithm with O(n3) complexity, making 
an excellent candidate for implementation on heterogeneous hardware. Mutual Information related 
work is also related to Transfer Entropy, due to the similarity of the algorithms. For Transfer 
Entropy two implementations can be mentioned. 
Shengjia Shao et.al in [23] present an architecture that could achieve up to 111.47x SpeedUp 
using a Maxeler System with a Xilinx Virtex-6 SX475T FPGA. Their implementation achieves such 
a significant SpeedUp by using Bit-width Narrowing, in order to reduce the memory and bandwidth 
requirements of the algorithm. Basically instead of streaming 32 Bit integers they stream 4 bit 
Integers which allows a lot more parallelization, because 8 values can be streamed through each 
stream, allowing the utilization of 24 Transfer Entropy processing cores. This implementation 
requires certain characteristics by the dataset, as it requires that the bin values won’t exceed the 
4Bit integer maximum value.   
Patricia Wollstadt et al. in "Efficient transfer entropy analysis of non-stationary neural time series." 
present an implementation of Transfer Entropy for neural time series, using GPUs.  Their 
implementation achieves a SpeedUp of about 50 on the NVIDIA GTX Titan. 

3.4.1.3 Profiling 

Transfer Entropy (TE) algorithm takes as input two time series representing two random variables. 
For QualiMaster these time series are stock price values like in Mutual Information. In order to 
calculate the TE between two random variables the Probability Density Functions have to be 
estimated. For TE, just like Mutual Information, histograms were used for pdf estimation. The 
output of the histograms are p(x), p(x, y), p(xn+1, x) and p(xn+1, x, y). These functions are 
represented by a 1-D array for p(x), two 2-D arrays for p(x, y) and p(xn+1, x), and one 3-D array for 
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p(xn+1, x, y). The execution time of the pdf estimation increases with the amount of input data that is 
the length of the time series. On the Table below we present the pdf estimation processing time for 
different sizes of time series length. 

 

Time Series Length Execution time (ms) 

10000 0.5 

100000 4.1 

1000000 47.5 

10000000 539 

100000000 5124 

Table 12:pdf estimation 

As shown on the previous table the pdf estimation execution time increases linearly with the 
increase of the input data. 
As mentioned above, the quality of the pdf increases with the number of Bins, but increasing the 
number of Bins leads to cube increase of the execution time for TE calculation. TE iterates over 
the pdfs based on equation (2), which has a computational complexity of O(n3). The Table below 
presents the relation between the number of Bins and the TE execution time. 

 

Num. Of Bins Execution time (ms) 

100 32 

200 250 

500 3930 

1000 34150 

1200 54132 

Table 13:TE calculation 

Just like with Mutual Information, for very small number of Bins and very large time series lengths 
the pdf estimation can be more time consuming. On the average case (1000 Bins, 105-106 time 
series length) the TE execution time takes 98% of the total execution time. So the TE calculation 
part of the software was implemented on hardware. 
 

3.4.2 Architecture 

 
The system architecture for Transfer Entropy shown in Figure 12 is very similar to the architecture 
presented in 3.4.2. The TE calculation also starts with the pdf estimation, which is done on 
software, streams the pdfs data to the DFE where TE is calculated.  
The pdfs p(x), p(x,y), p(xn+1,x) and p(xn+1,x,y) are streamed to the DFE  The length of the streams is 
R3, with R being the number of bins and R3 is the size of p(xn+1,x,y). In order for the rest 
pdfs/streams to match the stream size of p(xn+1, x, y), p(x) is copied R times and streamed R time, 
p(x, y) is streamed R times and p(xn+1, x) is copied R times. These array copies increase drastically 
the memory requirements of the applications. 
These streams utilize 4 of the 8 streams available on the Maxeler System. In order to further 
accelerate the application the pdfs were divided by 2, providing 8 streams, actually 6 streams are 
used as 2 streams remain the same for both cores, p(x) and p(x,y), which are streamed R/2 times. 
Also 2 hardware cores are responsible of calculating the partial TE results. This allowed more 
bandwidth utilization and thus even better performance. Also, even with two cores the FPGA 
resource Utilization remains at about 10% of the total available resources, indicating that the 
limiting factor remains the PCI bandwidth, just like in MI. The results from the hardware cores are 
streamed and accumulated on software to produce the TE final result. Accumulating the partial 
results on software is the most efficient solution for the Maxeler system.   
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Figure 12: Transfer Entropy basic System Architecture 

 
The basic hardware architecture for the calculation of TE (equation (1)) is presented on Figure 13. 
This architecture represents each one of the TE1 and TE2 cores shown in Figure 12. The basic 
architecture is almost the same as in Mutual Information. The basic difference of the two 
algorithms is the size of the pdfs, which for MI is R2 and for TE is R3. The architecture is fully 
pipelined, allowing an iteration of the Sum to be calculated every clock cycle. The four pdfs are 
streamed to the pipeline, one value per pdf every clock cycle, are processed in the pipeline and the 
results are accumulated in the Sum module.  
Single precision cores were also used for the TE architecture modules, which are implemented 
with floating point cores, except the log approx. and Sum modules. The two components that differ, 
the log approx. and Sum module, were further analyzed in 3.42.1 and 3.4.2.2 respectively, as their 
implementation is the same as in MI. 
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Figure 13: Hardware Architecture for the Transfer Entropy implementation 

 

3.4.3 Performance 

 
In this section the performance results of the implementation of the Transfer Entropy algorithm on 
hardware are presented. The platform where the experiments were run is the same MPC-C series 
Maxeler System presented in the previous section for MI, with two 6core Intel Xeon @ 3.2 GHz 
with 50GB RAM, and 4 DFEs (XCV6475T FPGAs) connected via PCI with the CPU, with a 2GB/s 
bandwidth. The maximum bandwidth can be achieved by using the 8 streams available for each 
DFE. Each stream has a maximum bandwidth of 250MB/s.  

3.4.3.1 Hardware vs. Software  

The results of the comparison of the hardware and software implementations are presented on the 
following Tables. In Table 14 the comparison of the software execution time with the hardware 
execution time with 1 TE calculation core is presented, while Table 15 presents the same 
comparison but with 2 cores running on the hardware. The experiments presented here and in the 
next section were done using 100.000 length time series for two random variables. The random 
variables represent stocks, while the time series are their values over time. The datasets were 
taken from the data provided by Spring. The software used in these experiments is the equivalent 
single thread implementation of the algorithm. It is written in C and the pdf estimation part is also 
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used on the hardware implementation in the host code segment. Also it is optimized as it is 50% 
faster than the software presented in [23]. The processing time results show that even for small 
amounts of Bins the hardware implementation is faster than the software, unlike MI. The 100 Bins 
for TE is like the 1000 bins for MI with respect to the streamed data size, where MI is faster than 
software. As the number of bins increases, the hardware performance increases, as the 
initialization time is a small fraction of the calculation time. The first architecture (1 TE calculation 
core) achieves a performance increase of up about 3.5x. For this implementation 4 of the 8 
streams to the DFEs were used and only 5% of the available FPGA resources. 
 

Num of Bins SW(sec) HW1(sec) SpeedUp 

100 0.074 0.054 1.4 

200 0.53 0.16 3.3 

500 6.1 1.7 3.6 

800 23.3 6.8 3.4 

1000 45.2 13.4 3.4 

1200 77.8 22.4 3.5 

1300 98.9 28.8 3.4  

Table 14:SW vs. HW TE calculation time with 1 core 

There are 8 streams available for data streaming between the CPU and the DFE in the Maxeler 
MPC-C series system. In order to utilize more of the available bandwidth the pdfs were divided by 
two, which allows the use of 8 streams. Actually 6 streams are utilized as the pdfs p(x) and p(x, y) 
that were streamed R times are now streamed R/2 times instead and are used by both the 
processing core. Also by using 2 processing cores the processing power of the hardware is 
doubled. This improvement allowed an increase on performance of up to 5.4x for large number of 
Bins. Equation (2) just like in Mutual Information allows the parallelization of the Transfer Entropy 
algorithm. The maximum available bandwidth is the limiting factor as the 2 core implementation 
utilizes less than 10% of the available FPGA resources while using 6 of the 8 available streams.  

 

Num of Bins SW(sec) HW2(sec) SpeedUp 

100 0.074 0.046 1.6 

200 0.53 0.11 4.8 

500 6.1 1.1 5.5 

800 23.3 4.5 5.2 

1000 45.2 8.5 5.3 

1200 77.8 14.5 5.4 

1300 98.9 18.4 5.4 

Table 15:SW vs. HW TE calculation time with 2 cores 

  

3.4.3.2 Hardware Implementations comparison  

 
In this section the comparison of the performance of the single and double core architectures is 
presented. On Table 16 the execution times, for different numbers of Bins, of the two architectures 
are compared. As shown in the Table while the number of bins increases, the increase in 
performance approaches 1.6x, as the initialization overhead becomes a small fraction of the total 
execution time. The expected performance increase is 2x as the processing is doubled by using 2 
hardware cores. The 2 core architecture needs preprocessing in software in order to split the pdfs 
in half, which reduces the factor from 2x to 1.6x. 
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Num of Bins HW1(sec) HW2(sec) SpeedUp 

100 0.054 0.046 1.2 

200 0.16 0.11 1.5 

500 1.7 1.1 1.5 

800 6.8 4.5 1.5 

1000 13.4 8.5 1.6 

1200 22.4 14.5 1.5 

1300 28.8 18.4 1.6 

Table 56:TE 1core Vs 2core HW implementations 

 
The throughput presented on Table 17 is not the real PCI throughput but the application 
throughput as in the time factor the initialization of the DFE is taken into account. For small number 
of bins the throughput of the 2 core implementation is lower than the 1 core, as the initialization 
time remains the main factor of the execution time, just like in MI. With the increase of the number 
of bins the throughput reaches up to 1.4GB/s for the 2 core architecture approaching the 
theoretical PCI bandwidth for 6 streams, which is 1.5GB/s. On the other hand, the 1 core 
architecture exceeds the theoretical bandwidth, which is1GB/s for 4streams, by achieving 1.2GB/s. 
It is not clear why the 4 stream maximum bandwidth is exceeded. Probably there are some 
optimizations done by the Maxeler OS/Maxcompiler, if there are available unused streams, which 
allow the utilization of more than one stream for each one of the user defined streams. 
 

Num of Bins HW1(MB/sec) HW2(MB/sec) 

100 297 261 

200 800 873 

500 1176 1364 

800 1205 1365 

1000 1194 1412 

1200 1234 1430 

1300 1221 1433 

Table 17:Throughput comparison 4 streams ïvs. 6 streams 

The only implementation this work could be safely compared with is the one presented in [23] as 
similar datasets are used while the experiments are done on the same platforms. The Transfer 
Entropy implementation presented is only 5x faster than the equivalent software implementation, 
while the implementation presented in [23] mentions speedups of about 112x over their software, 
which is 50% slower than our software implementation. This happens due to the optimizations 
implemented in [23]. These optimizations are data dependent, like Bit-width Narrowing which 
allowed better bandwidth utilization. If different datasets are used this technique may not be viable. 
This work, on the other hand, has the scope to be able to handle any dataset, or configuration 
(Num of Bins), while maintaining the required accuracy. Using such techniques like the ones 
presented in [23] would narrow the TE configurations/datasets this hardware implementation would 
be able to handle. 
 

3.5 SVM 
 

3.5.1 Introduction 

Support vector machines (SVMs) were introduced by Vapnik et al. in the early 90s [26]  and are 
considered to be highly accurate methods for a various set of classification tasks. Manning et al. 
provide a formalization of the SVM classification method in the context of classification. Given a set 
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of n training documents with/and the corresponding class labels, we make the assumption that the 
training data is linearly separable. The linear SVM method aims at finding a hyperplane that 
separates the set of positive training documents from the set of negative documents with a 
maximum margin. In 1992, Vapnik et al. suggested a way to create nonlinear classifiers by 
applying the kernel trick (originally proposed by Aizerman et al.[27]) to maximum-margin 
hyperplanes. The resulting functionality suggests that every dot product is replaced by a nonlinear 
kernel function to allow fitting the maximum-margin hyperplane in a transformed feature space.  

In the previous deliverable we analyzed and stressed out that the kernel computation, i.e. matrix-
vector operations, constitute the most computationally expensive and time consuming part of the 
SVM Training algorithm, as it ranges from 75% to 80% of the program’s total runtime. Furthermore, 
due to the fact that dataflow architectures are designed to support thousands of simple arithmetic 
operations and in addition the kernel computation of the SVM method has been proven to be 
highly parallelizable, we decided to map this task on a special-purpose platform 

Recall that we selected the following operation to be designed and implemented on an FPGA: 

ὨέὸὼὮ,ὼὮ  2ὨέὸὼὭ,ὼὮ

ὲόάέὪὨὥὸὥ

Ὦ= 1

 

Where j denotes all the data instances in the input dataset, i shows the index of the element in the 
working set and dot() is the dot product operation.  

3.5.2 Summary of First Architecture 

Our first approach, described in the first deliverable of QualiMaster, did not yield performance 
improvement. Recall that in order to obtain proper functionality we used the stream offset 
functionality of Maxeler that preserves a buffer containing the elements of a specific, predefined 
window of data. We selected the specific functionality to access data that appear after the current 
data sample that is flowing through the DFE. This was necessary to obtain the whole dot product 
computation. 

Moreover each element of the xi vector, which remains constant during the summation loop, was 
sent into the DFE as a scalar, and therefore was stored in the FPGA in a register. Hence, these 
elements were always available for kernel computation. However, this also limited the possible 
size of input vector xias it had to equal at most the available number of registers in the DFE. Thus, 
our first approach could not be tested with datasets whose feature space was more than a few 
tens of features which led to our second approach. 

3.5.3 Second Architecture 

 
Given that our main goal was to accelerate the kernel function computation, we carried out the 
necessary problem partitioning. Recall that the input of the training algorithm is a dataset which 
comprises several data instances and whose size ranges from a few Megabytes to several 
Gigabytes. Furthermore, this dataset is transformed into a two dimensional data structure with 
dimensions mxn, where m denotes the number of data instances and n shows the maximum 
number of features. Due to the fact that producing a dot-product is completely independent from 
producing another, we divided the mxn dataset into chunks. Each of these chunks is processed in 
parallel with the others. Finally, a kernel function does not only require the result of the dot-product 
of a data instance with another, but also the dot product of each data instance with itself. These 
separate dot products are also produced in parallel to reduce the total kernel function computation 

time from T to approximately
Ὕ

7
, where T shows the hardware execution time with one hardware 

core and 7 denotes the number of chunks each of which is transformed to a one-dimensional 
vector. In particular, the two-dimensional dataset is transformed into seven vectors in a zig-zag 
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order, i.e. (1,1), (2,1), … ,(14,1),(1,2),(2,2)...(k-1,l),(k,l), where k and l the last row and last column 
of a chunk respectively.  The reason for this data arrangement lies in the fact that we want to 
overlap the feedback created by the adder in the dot product with useful computations.   
 
An overview of our new system is shown in Figure 14. The hardware module undertakes the kernel 
function computation. Data instances i and j of the working set are streamed into the DFE. Thus, 
the reconfigurable system does not depend on the feature space of the training dataset, but is fully 
parameterized; it changes dynamically the dimensions of the data structures according to the 
needs of the application. Another high-level detail is that the training dataset is not inserted into the 
DFE from the CPU in streams. More specifically, the training data samples are stored in the 
beginning of the program into the off- chip DRAM (LMem). Then, the LMem feeds the Kernel with a 
data element per time instance, and the same applies for the CPU. 
 

 

Figure 104: SVM Kernel Computation System Overview 

 
The kernel computation of one parallel hardware unit is shown in Figure 15. Due to the fact that we 
pipeline 7 streams in this architecture, we have 7 parallel processing units to reach maximum 
performance. Each of these units produces a partial kernel computation that is sent back to the 
host in order for the final output to be carried out. Given that we pipeline 7 streams into the kernel, 
the hardware produces 7 partial kernel functions. In order to do so the FPGA carries out 14 dot-
products in parallel, and therefore a total of 14 multiplications and 14 sums are required for the 
whole design. In the trivial loop used for the dot-product calculation we have looked at so far, each 
iteration of the loop relies on a previous value. In particular the appearance of a new feature of a 
data instance leads to a multiplication of this feature with the respective feature of instance i, as 
well as to an aggregation of the computed value with the rest of the subtotal, i.e. sum = sum + xi*xj, 
where sum is the remainder of the dot-product computation, and xi and xj show the features of data 
instances i and j respectively. Recall, that the kernel computation also requires computing value 
sum = sum + xj*xj which denotes the dot-product of a data instance with itself. Hence, since we 
have 2 partial aggregations for each parallel instance, and given that there are 7 parallel units 
running on the DFE , we have to preserve 14 such partial aggregations. This creates a pipeline 
where each stage of the pipeline calculates a value of sum based on the value of sum from the 
previous stage of the pipeline. Due to the fact that there is dependence from one iteration to the 
next, and thus a cycle is created in the dataflow graph.  
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Figure 115: Dot-Product Hardware Architecture 

3.5.4 Performance 

 
Our main difference in resource and bandwidth utilization of the presented hardware system, 
compared to our previous architecture is that in the former case we achieve maximum bandwidth 
and limited resource utilization, whereas in the latter case we achieved the exact opposite. 
However, the former approach also allows us to test high-dimensional datasets, and therefore is 
considered more suitable for the SVM Training phase. In our previous architecture, resource 
utilization was reduced, but at the same time we reached maximum possible bandwidth utilization. 
A summary with the resource utilization of our second approach is shown in Table 18. 

 

 Used 
Maximu

m 
Percenta

ge 

LUTs 
6802

5 
297600 22.86% 

FFs 
9811

8 
297600 32.97% 

BRAM
s 

536 2128 25.19% 

DSPs 140 2016 6.94% 

Table 18:MAX3A Vectis Resource Utilization of SVM Training Dataflow Architecture 

 
Even in our last attempt to create an accelerated SVM Training system by utilizing the maximum 
bandwidth and by performing in parallel as many operations as possible, we did not manage to 
accelerate the respective LIBSVM software execution time. Recall that LIBSVM is the state-of-the-
art open source package for SVM Training and Classification. It is broadly used as reference 
software by both the hardware and the software research communities. In order to conduct a 
precise comparison between the hardware and software systems we considered the exact same 
parameters, which are the kernel function and the arithmetic precision. In addition, our parallel 
approach is compared with the package’s source code which is single thread. The performance of 
our second architecture is shown in Table 19. The dataset size column contains values of the type 
(a, b), where a shows the number of data samples in the dataset  andb denotes the maximum 
number of features. 
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Dataset Size 
SW  

(sec) 
HW 

(sec) 
SpeedUp 

(35*103, 22) 27.19 145.56 0.18 

(21*104, 22) 1804 5733 0.31 

(42*104, 22) 6795 19536 0.34 

(6*103, 5*103) 16*105 44*105 0.36 

(18*103, 
5*103) 

5*106 134*105 0.37 

(48*103, 
5*103) 

102*105 352*105 0.28 

(75*102, 
2*103) 

2.71 8.8 0.3 

Table 19:Performance of SVM Training Dataflow Architecture 

 
Regarding the comparison between LIBSVM and our more efficient hardware implementation we 
observed that our overall system's performance was approximately 3 times slower. This number 
corresponds to the time required by both systems to complete the SVM training phase. Thus, it 
does not reflect the exact time required to perform the kernel computation which is the task that 
was mapped on hardware. More specifically, it also includes the overhead of writing in the off-chip 
memory and of initializing the streams that are inputted into the FPGA. In fact, we computed that 
the core that performs the kernel computation for small datasets (35*103, 22) was 10 times slower 
on hardware than on software, but for bigger datasets (6*103, 5*103) this number approached 1. 
Firstly, we stress out that in a software implementation efficient data structures can be used, 
whereas the same is not possible in a Maxeler system. On Maxeler we need to declare a single 
constant size for our inputs, which is inevitably the maximum possible number of features in a data 
sample. This also determines the number of clock cycles required by the hardware side to yield the 
final outcomes. Moreover, recall that 61% of the FPGA's space remains unexploited. Yet, we could 
not map additional parallel units (kernel computation cores) to the FPGA because the PCI express 
only allows 8 input and 8 output lanes to and from the host to hardware respectively. In addition to 
the limited number of inputs and outputs, our system significantly approached the maximum 
possible bandwidth provided by a stream. More specifically, the PCI express used by MAX 3A 
Vectis provides 250 MB/s per lane. For dataset (6*103, 5*103) we computed that 285 MBs/per lane 
were transferred. We assume that this happens between the Maxeler System utilizes spare 
streams in case they are not been utilized. All the aforementioned observations led to the 
conclusion that the hardware core processing time should dominate the overall hardware runtime 
in an application to achieve efficiency. 
Research efforts towards developing efficient parallel Support Vector Machines implementations 
span FPGA and GPGPU hardware-based approaches. The former class of implementations 
focuses on low precision arithmetic and approximate solutions to yield speedup. In [28] Cadambi et 
al. achieved 18.2x acceleration for 4-bit precision numbers, whereas in [29] Bouganis et al. 
reached 1-2 orders of magnitude speedup by implementing a custom precision arithmetic 
approach. Both these works compared the proposed hardware systems with their own software 
implementations and in addition they produced approximate solutions. Our effort focused on 
evaluating the performance of an FPGA-based approach that achieves the optimal solution and 
that is compared with the state-of-the-art LIBSVM software package. Thus, even though we did not 
reach the expected performance, we only considered exact solutions and compared our system 
with the widely accepted and optimally developed LIBSVM package. In general, the GPGPU 
hardware-based approaches have demonstrated accurate results and very good performance that 
approaches ~80x acceleration compared to LIBSVM [30], [31]. Yet, the same was not observed in 
the performance of our Maxeler hardware system due to the fact that the Maxeler platform does 
not allow random memory accesses  and does not offer the same bandwidth as the GPGPU cards.  
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3.6 Hardware-based Implementations tradeoffs 
 
The previous sections presented the reconfigurable architectures and the corresponding 
performance results for various streaming processing algorithms. We compared the performance 
of the proposed implementations vs. single-threaded or multi-threaded software solutions. This 
section sums up some important issues as far as the performance results and the restrictions of 
the hardware-based solutions compared to the restrictions of software solutions. Also, we are 
going to present the tradeoffs from the hardware-side perspective as far as the performance 
achieved vs. other important parameters, like the accuracy, the capacity, etc.  
First, a hardware-based solution for the ECM-sketch data structure was presented. The results 
showed that this first hardware-based solution can offer really good performance, i.e. up to 10x, vs. 
the official single thread software solution. The advantage of the hardware solution vs. software 
implementation is that reconfigurable logic offers fine grained parallelization leading the processing 
cost to O(1) for each new element, whereas the software solution can offer only amortized O(1) 
cost for each element. Thus, the hardware-based ECM-sketch implementation offers really good 
throughput in comparison to software with the same error rate, as we used the exactly the same 
parameters. On the other hand, hardware solution is resource limited. In more details, a high 
increase for the window size would lead to a lack of FPGA’s resources, i.e. internal memory, which 
would lead to a need for a different architecture and the extension to multiple FPGA devices. The 
same thing would take place in case of ECM-sketch data structures with higher dimensions. Such 
kind of problems, are going to be solved in the next generation of the hardware-based ECM-sketch 
solution. 
Next, we presented a hardware-based solution for the Hayashi-Yoshida correlation metric. The 
performance results are really impressive, as hardware can process in real time 10 times more 
stocks markets, than a Storm-based solution on a small cluster of 7 nodes. The advantages of the 
hardware-based Hayashi-Yoshida implementation is the high throughput that offers vs. software 
with exactly the same accuracy. On the other hand, the proposed implementation is restricted by 
the bandwidth and the number of the I/O buses between the hardware part and the software part 
that prepares data. Thus, this restriction leads to lower parallelization level and we need to pass to 
a multi-FPGA solution, i.e. next generation hardware-based Hayashi-Yoshida solution, in order to 
solve this problem.  
Two new hardware-based solutions for the Mutual Information and the Transfer Entropy algorithms 
were presented. The performance results showed that hardware solutions can process input 
datasets about 5- and 10- times faster than the corresponding single threaded solutions. The main 
advantage of the hardware solutions is the high performance in accordance to the low resource 
utilization, which leads to opportunities for higher parallelization levels. On the other hand, the 
hardware based solution offers lower accuracy due to restrictions on the floating point modules 
that are needed by such type of problems. The error that hardware-based solution creates is really 
low and it does not seem to change the algorithmic characteristics of the output. 
Last, a hardware based solution for the SVM algorithm was presented. As the results show, the 
hardware-based solution offers a performance equal to the optimized software solution with exactly 
the same accuracy. The main drawback in this hardware implementation is that the low 
parallelization nature of the algorithm leads to not good performance results for the hardware 
solution vs. the corresponding software implementation.  
Concluding, this section presented the tradeoffs between the building a solution with really good 
performance results vs. the software solution. Some general conclusion can come up from the 
implementation of streaming algorithms on hardware and their performance comparison vs. the 
software solutions. First, hardware platforms seem to offer a good solution vs. software 
performance in cases that dataset is really big and the processing cost is high. The overhead for 
the hardware running in cases with small datasets or small processing cost leads to reductions in 
performance advantages vs. software solutions. Another restriction for the hardware 
implementation is the bandwidth. We need to ―match‖ the Maxeler offered  bandwidth to the needs 
of the algorithm in order to take the best performance results, otherwise this could lead to 
underutilization of the hardware, thus to lower parallelization levels. Last, another crucial issue for 
the hardware solutions is the available resources. The proposed solutions need to fit in the 
hardware devices as far as the available resources in order to take really good performance 
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advantages, otherwise more sophisticated solutions need to be suggested, e.g. multi-FPGA 
solutions.  
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4 Outlook for the design automation tools 
 
The QualiMaster partners worked on a Remote Procedure call interface between user applications 
and DFE accelerators communicating via the World-Wide-Web. This functionality supports glue-
less interface between user level programs and accelerators by enabling remote deployment of 
configuration bit-streams anywhere on the web and controlled remote DFE execution. The chosen 
approach is scalable and allows multiple DFEs instantiating different streaming accelerators to be 
used simultaneously while the data streams can be configured as parallel independent channels or 
as a chain where the involved DFEs implement different computational phases. In the case when 
the remote DFEs are instantiated by the Juniper Switch DFE based application acceleration 
module (also referred as JDFE), high bandwidth and practically infinite in size streams of data can 
be processed. Please note that JDFE is bit-stream compatible with Maxeler'sMAX4 ISCA 
networking cards that can be used as a development platform. 

In addition, partners worked on improving its SLiC interfaces in order to support multiple widely 
used high-level languages. The system call prototypes exposed to the user application respect not 
only the calling standards of the corresponding language but also are well documented and 
support highly intuitive naming conventions (in addition to the three different DFE control levels). 
MAX supported TSI in their implementation endeavors and will continue doing this during the next 
phases of the projects. 

Working on all the above interfaces, automated creation of APIs for different Maxeler platforms, for 
every given algorithm based on its technical analysis is an option for the automation design tool. 
Interfaces proved to be very significant in design procedure as many of the algorithms mapped on 
hardware proved to be I/O bounded. Their performance was limited due to I/O restrictions. 
Implementing mapped algorithm interface, with automation tool will offer an optimized interface. 
Furthermore, such a tool will give flexibility to QualiMaster project and platform independence as 
all the mapped algorithms would be easily retargeted to different Maxeler platforms. 
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5 Conclusions 

 

This deliverable continues work that has been done in D3.1. Designs that came up from D3.1 have 
been implemented, verified and evaluated for their performance at the Maxeler System Level. 
These systems have been designed in order to be ready for the QualiMaster pipeline level 
integration. Every single algorithm is integrated so that it can be added as a single topology while a 
single Maxeler platform can host up to four topologies of the same or different algorithm.  

Algorithm designs were improved and some of them where redesigned partially or completely. The 
SVM algorithm was redesigned completely and the new design can handle bigger datasets but 
without any performance boosting due to platform restrictions. The Hayashi Yoshida 
implementation has a performance boost of 100 times vs. a conventional processor as it can 
calculate correlation of 10 times more stocks, which results in a computational cost 100 times 
bigger, in real time., using real life data. The Exponential Histogram was integrated with the Count 
Min forming the ECM Sketch design, as is the original software. These implementations proved to 
be 10 times faster but the hardware implementation can be extended and further optimized. 

In this deliverable two more algorithms where added for both financial and social media data. 
Transfer Entropy and Mutual Information. They both proved that they can be implemented 
efficiently in Hardware, and they outperform by 5- and 10- times respectively their software 
implementations. This is an initial approach and further optimization is expected.  

For all the designs an initial interface with the QualiMaster pipeline has been designed and is 
under development and testing. There is planning for hardware extensions of the mapped 
algorithms such as the ECM Sketch with query functionality addition, or hardware implementation 
of the probability density function (PDF) estimation for Mutual Information and Transfer Entropy.  

In addition to the hardware designs, presented in D3.2 several guidelines were established 
towards the automation design tool, to be developed in the following year. 
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