

www.qualiMaster.eu

QualiMaster

A configurable real-time Data Processing Infrastructure
mastering

autonomous Quality Adaptation

Grant Agreement No. 619525

Deliverable D3.2

Work-package WP3: Optimized Translation to Hardware

Deliverable D 3.2 : Hardware-based Data Processing Algorithms V1

Deliverable Leader Telecommunication System Institute

Quality Assessor H. Eichelberger

Estimation of PM spent 20

Dissemination level Public (PU)

Delivery date in Annex
I

31.7.2015

Actual delivery date 31.7.2015

Revisions

Status Draft Ver. 1

Keywords: QualiMaster, Adaptive Pipeline, Reconfigurable Computing, FPGA
Computing, Hardware, Support Vector Machines (SVM), Count Min,
Exponential Histogram, Hayashi-Yoshida Correlation Estimator, Mutual
Information, Transfer Entropy.

QualiMaster Deliverable 3.2

Page 2(of 47) www.qualimaster.eu

Disclaimer

This document contains material, which is under copyright of individual or several QualiMaster

consortium parties, and no copying or distributing, in any form or by any means, is allowed without

the prior written agreement of the owner of the property rights.

The commercial use of any information contained in this document may require a license from the

proprietor of that information.

Neither the QualiMaster consortium as a whole, nor individual parties of the QualiMaster

consortium warrant that the information contained in this document is suitable for use, nor that the

use of the information is free from risk, and accepts no liability for loss or damage suffered by any

person using this information. This document reflects only the authors’ view.

The European Community is not liable for any use that may be made of the information contained

herein.

 2015 Participants in the QualiMaster Project

Deliverable 3.2 QualiMaster

© QualiMaster Page 3(of 47)

List of Authors

Partner Acronym

TSI

MAX

Authors

E.Sotiriades, G. Chrysos, P. Malakonakis, S.M. Nikolakaki, Y.
Papaefstathiou, A. Dollas

G. Gaydadjiev

QualiMaster Deliverable 3.2

Page 4(of 47) www.qualimaster.eu

Table of Contents

Disclaimer .. 2
List of Authors ... 3
Table of Contents ... 4
Executive summary .. 5
1 Introduction ... 6

1.1 Selected Algorithms and designs .. 6
1.2 Interaction with other WPs .. 6
1.3 Addressing D3.2 objectives .. 7
1.4 Addressing Reviewers’ remarks ... 9

2 Algorithms and System Design ... 10
2.1 Platform Level Design ... 10
2.2 System Architecture ... 11

3 Design of Architectures .. 13
3.1 ECM-sketches... 13

3.1.1 Introduction .. 13
3.1.2 Architecture .. 15
3.1.3 Performance .. 17

3.2 Hayashi-Yoshida Correlation .. 19
3.2.1 Related work .. 19
3.2.2 System Architecture.. 19
3.2.3 Performance .. 21

3.3 Mutual Information ... 23
3.3.1 Introduction .. 23
3.3.2 Architecture .. 26
3.3.3 Performance .. 29

3.4 Transfer Entropy ... 31
3.4.1 Introduction .. 31
3.4.2 Architecture .. 33
3.4.3 Performance .. 35

3.5 SVM .. 37
3.5.1 Introduction .. 37
3.5.2 Summary of First Architecture .. 38
3.5.3 Second Architecture ... 38
3.5.4 Performance .. 40

3.6 Hardware-based Implementations tradeoffs .. 42
4 Outlook for the design automation tools .. 44
5 Conclusions .. 45
References... 46

Deliverable 3.2 QualiMaster

© QualiMaster Page 5(of 47)

Executive summary

The QualiMaster project, at roughly half-term during its duration, has achieved all of its goals for
this period. Regarding the custom hardware integration into the QualiMaster adaptive pipeline,
meeting all goals was no easy task, as considerable setbacks forced the team to seek alternate
research solutions, many of which are highlighted in this deliverable.

The Deliverable D3.2 presents the current status of the hardware implementations of various
algorithms, using the Maxeler Field Programmable Gate Array (FPGA) hardware platform with a
Dataflow Engine (DFE) computational model. Several of the originally proposed algorithms were
either proven to be unsuitable for hardware implementation, or the hardware implementation had
less than expected performance gain due to limits in exploitable parallelism (LDA and SVM,
respectively). Nonetheless, other algorithms, not originally planned for implementation within the
original QualiMaster project goals were efficiently mapped to the Maxeler platform. These new
algorithms yielded substantial speedups vs. state-of-the-art software, or, they allowed for greater
scale processing to be done vs. software. These algorithms were Mutual Information, Transfer
Entropy and Hayashi-Yoshida. All three algorithms are of high importance for the overall project
goal on competitive systemic risk solution. In addition, a Maxeler node which was integrated to the
community-standard Storm distributed processing environment (see Deliverable D3.1), allowed for
tight coupling (for the first time, ever) the Maxeler special-purpose hardware with the Storm
environment and enabled system-level performance evaluation, detailed in the present deliverable.

Following a successful first year review and the reviewers’ comments, the hardware team
proceeded with the updated QualiMaster objectives. The reviewers’ comments from the first year
review were explicitly addressed, and they are presented in the current deliverable.

For readability purposes, the tasks and corresponding progress which are detailed in this report, as
well as the reviewers’ comments and how they were addressed, are presented in tabular form in
Section 1, so that the correspondence between tasks, reviewers’ comments, and project results
can be easily established.

Lastly, this deliverable contains (as applicable) information regarding upcoming research actions
on the WP3 of the QualiMaster project, so that the ―big picture‖ of current progress vis a vis the
project goals will be apparent.

QualiMaster Deliverable 3.2

Page 6(of 47) www.qualimaster.eu

1 Introduction
In D 3.1 the QualiMaster partners had shown the methodology and design process in order to map
algorithms to hardware. It has been shown that following a specific methodology these algorithms
can be mapped to hardware efficiently, with some initial results on such implementations. These
results were not focusing on performance but rather on an assessment of how well such
implementations would be mapped on hardware (in the case of LDA the results were negative),
and initial versions aiming at correct implementation of the algorithms. In the deliverable D3.2 the
issue of performance was addressed, together with a detailed performance comparison against
software, and seamless operation of the customized Maxeler systems in the QualiMaster pipeline.

The remainder of this Section details the tasks associated with the current deliverable and where
in this report the reader can see the detailed description of the performed work, as well as how the
reviewers’ comments were addressed. This rest of deliverable D3.2 introduces the outline of the
platform level design and system architecture of in the QualiMaster pipeline in Section 2. Section 3
presents in detail all the algorithms that have been implemented, including architectures and
results. In Section 4 there is the first approach to the Automation Design Procedure, and Section 5
presents Conclusions.

1.1 Selected Algorithms and designs
The selected algorithms address the QualiMaster goals to process big data and streaming data
from wide range of financial and social networks sources. This selection has been shown in D3.1
where the Count Min Sketch and its Exponential Histogram extension to create Histograms for big
streaming data have been mapped with very promising results. Also, the Hayashi - Yoshida
correlation estimator has been mapped to hardware with simulated capacity for real time
correlation estimation 10 times larger than software. The hardware design was experimentally
verified to calculate the correlation of 5,000 pairs of stocks instead of the 500 pairsthat the
software can calculate – a significant result since the one order of magnitude change corresponds
to two orders of magnitude more computations (the problem scales with O(n2)). The Support
Vector Machine (SVM) training algorithm has also been mapped to hardware, with the
implementation focusing on social network data processing (e.g. dimensioning the problem, using
high accuracy, etc.). It was the first full FPGA implementation of SVM training which has the same
accuracy as the well-known libSVM package to our knowledge. Results proved not to be satisfying
due to Platform design restriction and I/O bounds.

In order to process social network and financial data two new algorithms have been selected to be
implemented for the project. These are the Mutual Information estimator and the Transfer Entropy
estimator. Both algorithms can be used for the statistical analysis of financial and social network
data. These algorithms are presented in the present deliverable, and they are giving promising
initial results (presented in the deliverable). Both algorithms were mapped in hardware by following
the methodology proposed in D3.1 and the initial results show speedups of 10 times vs. the
optimized software [24].

1.2 Interaction with other WPs
In this deliverable, as was described above, the QualiMaster partners continue and extend the
work which was reported in D3.1, in the sense that this deliverable is the next step of the design
and system building approach. This has been done for the algorithms that have been presented in
D3.1 and for the algorithms that have been introduced in this deliverable. For the new algorithms
the partners follow the same methodology as described in D3.1. The new algorithms have been
selected in coordination with WP 2. Mutual Information and Transfer Entropy are both statistical
models for big data analysis and are used for processing of both financial and social media data.

Deliverable 3.2 QualiMaster

© QualiMaster Page 7(of 47)

Furthermore, in this deliverable, the Hayashi Yoshida algorithm that has been mapped to hardware
has been configured to be connected with the QualiMaster processing pipeline. Lastly, these
algorithms are part of the QualiMaster Infrastructure at WP5 used for the evaluation report at WP
6.

1.3 Addressing D3.2 objectives
This section focuses on the presentation of the objectives for the deliverable D3.2, as they were
described in the QualiMaster Description of Work (DoW). Table 1shows our actions on the D3.1
objectives and where in this deliverable more details can be found.

Task
s

Objective
Specific actions

undertaken according to
D3.2 objectives

Sections where more details can be
found

Task
3.1

Identify and analyse
algorithms that will
be accelerated
through hardware

Two new algorithms, Mutual
Information and Transfer
Entropy, were designed,
taking into account the I/O
issues and the algorithm
profiling.

Section 3.3.1 – Mutual Information

Section 3.4.1 – Transfer Entropy

Task
3.2

Develop an initial
translation of the
proposed stream
processing
algorithms on
reconfigurable
technology, offering
special-purpose
hardware-based
accelerators

We present the initial
reconfigurable-based
architectures for the ECM-
sketches, the Hayashi-
Yoshida, the Mutual
Information, the Transfer
Entropy and the SVM
algorithms.

Section 3.1.2 – ECM Sketches
Architecture

Section 3.2.2 –Hayashi-Yoshida
Algorithm Architecture

Section 3.3.2 – Mutual Information
Algorithm Architecture

Section 3.4.2 –Transfer Entropy
Algorithm Architecture

Section 3.5.3 –SVM Algorithm
Architecture

Provide technical
restrictions and the
related tradeoffs of
reconfigurable
hardware with
respect to the initial
translation of the
proposed algorithmic
tasks

Some initial technical
restrictions and tradeoffs are
presented. First, we describe
the restrictions for all the
implemented algorithms and
how the algorithm hardware-
software partitioning takes
place, e.g. for most of the
algorithms we build the
necessary data structures on
software, while the main
processing workload takes
place in reconfigurable logic.
Second, we describe the
restrictions on the
reconfigurable resources,
e.g., internal memory,
arithmetic operators, I/O
busses that restrict the
parallelization level of the
proposed implementations.
Last, we describe in details
the mappings of the internal

Section 3.1.2 – ECM Sketches
Architecture

Section 3.2.2 –Hayashi-Yoshida
Algorithm Architecture

Section 3.3.2 – Mutual Information
Algorithm Architecture

Section 3.4.2 –Transfer Entropy
Algorithm Architecture

Section 3.5.3 –SVM Algorithm
Architecture

QualiMaster Deliverable 3.2

Page 8(of 47) www.qualimaster.eu

resources so that we achieve
fine grained and/or coarse
grained parallelization.

Task
3.3

Move from special-
purpose translation
towards a general
mechanism for
mapping stream
processing
algorithms on
reconfigurable logic
(MAXELER)

Study of different platform
interfaces for different
algorithms. Proposal for
automated internal and
external interface.

Section 4

Employ rapid system
prototyping for
algorithm mapping,
so that
advantages/disadva
ntages of each
architecture to be
understood from
actual runs

The algorithm mapping into
hardware had tobe done
iteratively, with working
hardware designs in each
case. In SVM we present
theinitial and the final
architectures. Also, in some
algorithms, e.g. ECM
sketches, we combined the
implementation of previously
presented algorithms in D3.1
in order to implement an
initial hardware-based
architecture.

Section 3.1.2 – ECM Sketches
Architecture

Sections 3.5.2, 3.5.3 – SVM
architectures

Partially
reconfiguring the
hardware to
accommodate
pipeline adaptation.

We present an initial platform
level design, which can be
used as a part of the
QualiMaster pipeline. We
describe in more detail the
integration of the Hayashi-
Yoshida algorithm and the
Mutual Information algorithm
on a common Maxeler node
and how this system can be
connected and
―communicate ―with the
Storm-based structure of the
QualiMaster platform.

Section 2 – Algorithms and System
Design

Task
3.4

Initial performance
evaluation and
testing results for the
hardware-based
solutions

We present some initial
performance gains vs.
software (distributed or non-
distributed) solutions. We
tested our implementations
with variable size real-life
and/or synthetic datasets.

Section 3.1.3 – ECM Sketches
Performance

Section 3.2.3 –Hayashi-Yoshida
Algorithm Performance

Section 3.3.3 – Mutual Information
Algorithm Performance

Section 3.4.3 –Transfer Entropy
Algorithm Performance

Section 3.5.4 –SVM Algorithm
Performance

Table 1:Addressing D3.2 Objectives

Deliverable 3.2 QualiMaster

© QualiMaster Page 9(of 47)

In the next steps, we are going to focus on three main directions for the next Deliverable D3.3.
First, we plan to move on the second cycle of integrating the proposed hardware-based
architectures in the QualiMaster pipeline infrastructure. In addition, we are going to explore the
tradeoffs of mapping such algorithms on the adaptive pipeline and optimize it according to the user
needs. Second, we are going to further explore and map computationally intensive algorithms,
which combine processing of Social Network data and Economics, on hardware. Next, we are
going to optimize further the proposed hardware-based architectures in order to achieve even
further performance gains. Lastly, we are going to further explore and start establishing the
automation tool that will provide optimized solutions for reconfigurable logic from high-level
language descriptions.

1.4 Addressing Reviewers’ remarks

The major remark for WP 3 from the reviewers’ comments is the way in which the hardware-
mapped algorithms are compared against software implementations in terms of performance. They
have remarked that hardware implementation has to be compared against optimum software
implementations and this has to be done for the proper datasets. Especially for the datasets from
social networks the reviewers have recommended diversity, and not to restrict data sets just from
Twitter. Below we describe in more details the reviewers’ remarks, while Table 2 clarifies the
actions performed to address main reviewer’s remarks.

Reviewers' remark 1: ―When comparing hardware and software implementations make sure that
the software baselines used for comparison are state of the art implementations (in terms of
efficiency). However, it is likely the case that other algorithms become more appropriate –and
efficient- solutions for prediction. We therefore encourage TSI to keep close track of this issue and
implement the most promising methods for the task(s) at hand.”
In order to address the reviewers’ remarks on D3.2, the WP3 QualiMaster partners have been in
closer cooperation with WP5 to select the proper optimum implementations to compare against.
For the SVM implementation, the D3.2 presented results are against the well know LibSVM
implementation, which is used as a library for several platforms, including Matlab. The Count Min
structure integrated with Exponential Histograms (ECM Sketch) was compared against the official
software implementation. For Transfer Entropy we compare our own hardware and software
implementations against the software presented in [23] which involves the same algorithmic
implementation as well as similar time series datasets. Regarding our Mutual Information
implementation there is no optimized software implementation for financial or social network data
but only for image processing and so we compared the hardware implementations against WP5
implementations. For the Hayashi Yoshida algorithm there was no official distribution or optimized
implementation to our knowledge, therefore we compare hardware performance against WP5
distributed software implementation.

Reviewers' remark 2: “Evaluations should use larger collections of data. Try to move to evaluation
designs with larger collections of data”
In cooperation with WP5 the data sets were selected to be representative for the algorithms and
the cases that QualiMaster aims to cover. We used both synthetic and real life datasets and in our
future plans are to increase further the volumes of the processed datasets by providing more
optimized hardware-based solutions.

QualiMaster Deliverable 3.2

Page 10(of 47) www.qualimaster.eu

Recommendation Specific action undertaken to
answer

Section where more details
can be found

Comparison of the hardware
modules performance vs. the
best optimized software
solution

We compared the performance
of the hardware-based module
vs. the corresponding software
solutions under the same
conditions (input datasets,
input parameters). The
software solutions that we
used were the optimized –to
the best of our knowledge- and
in most of the cases we used
the official software code of the
algorithms.

Section 3.1.3 – ECM Sketches
Performance

Section 3.2.3 –Hayashi-
Yoshida Algorithm
Performance

Section 3.3.3 – Mutual
Information Algorithm
Performance

Section 3.4.3 –Transfer
Entropy Algorithm
Performance

Section 3.5.4 –SVM Algorithm
Performance

Test the implemented system
with a variety of high volume
synthetic and real life datasets
(especially for social datasets)

The performance of the
implemented system was
analyzed using synthetic and
real life datasets. We used big
volumes of data according to
the descriptions in DoW, and
as they are our initial
performance can be used as a
basis for further performance
achievements.

Table 2:Addressing Reviewersô Remarks

2 Algorithms and System Design
The next step for the algorithms which have been designed and simulated in the previous
deliverable (D3.1) was the algorithm implementation and performance evaluation at two different
integration levels. The first level of integration is at the platform running the part of the hardware-
mapped algorithm, integrated with the software part. The second level integration is the algorithm
running on the platform integrated with the QualiMaster pipeline. D3.2 focuses mainly in first level
integration and how to create the infrastructure for the QualiMaster pipeline level.

2.1 Platform Level Design

In order to map an algorithm to hardware, several steps have to be followed. These steps have
been presented extensively in D3.1, but for readability of this deliverable a brief summary will be
presented. The steps that the designer follows entail algorithm study, design, and implementation.
In order to study the algorithm the designer studies the nature of the algorithm and the size of
inputs and outputs (called the dimensioning of the required implementation). Depending on these
characteristics the designer should decide if some protocol implementation (e.g. for I/O) or any
other module is needed. The designer also studies the size of inputs and outputs in order to decide
how to process these data, e.g. if all the data are available on-chip or external memory is required,
etc. Subsequently the designer decides on the data sets that are representative for the algorithm.
Depending on the data set, algorithms may vary in their statistical characteristics, the size of their
implementation, or their parallelization characteristics. When the data set characteristics are
determined the designer can get the right decisions and validate his design properly. Using these
data sets, the next step is algorithm profiling, where the designer tries to find the most compute-
intensive part of the algorithm that it is going to be mapped to hardware. The designer also
measures the ―memory footprint‖ of the algorithm (i.e. the memory requirements) in order to decide
about data manipulation e.g. reorder data in main memory. The final step for the study procedure
is to identify the important Data Structures and Operations. This step helps the designer to
understand algorithmic parallelization and the type of the modules that are needed, e.g. 32- or 64-
bits floating point arithmetic vs. fixed-point arithmetic.

Deliverable 3.2 QualiMaster

© QualiMaster Page 11(of 47)

The design procedure follows, where the designer has to do Top Down analysis where he/she
analyzes the algorithm in abstract blocks, giving functionality description and description for their
interface. Bottom Up modeling follows where the designer models the functionality and interfaces
for each abstract block to build the subsystem. Then the designer debugs the model starting from
small and scaling to bigger system blocks, using data from the given data sets. The last step for
the design procedure is to do verification of the designed model, in which the designer uses the
representative datasets in order to verify that his/her model works exactly the same as the original
algorithm implementation. If a problem is detected at the design procedure, the designer has to go
back, as needed, and repeat the process.
The last step for the designer is the implementation process. The implementation is platform-
dependent and follows three steps. In the first step the designer has to implement the interface
between the hardware and software. Such interfaces can include several layers and many of them
are implemented by each platform vendor. For example, a PCI connection can exist between CPU
and FPGA. There may be multiple such implementations and the designer has to select the given
PCI options for his/her design. In higher levels of design the designer usually has to design several
modules for the required interfaces. The following step is to integrate the model which has been
built-in the design procedure as a module in the implementation procedure. Modeling of the
algorithm has to be in the proper description language. Such a language can be a Hardware
Description Languages can be Verilog or VHDL or in more sophisticated platforms such as the
Maxeler System they can be Java or C with extensions. The description language depends on the
platform, as it is common for a platform to support more than one language. The last step in
system building is validation. The same data sets that have been used on system design validation
are used to validate the complete system running on the platform. For this procedure the output
usually has the same look and feel and a direct comparison of the results can be done. Software
and hardware systems should have identical results in order to validate the hardware design.
The implemented system is modular in the sense that there are two distinct modules: software and
hardware. Such a system can also be considered as a module for the QualiMaster pipeline and
this is considered as the second level of integration.

2.2 System Architecture
In the deliverable D3.1 the design procedure has-been described, as well as how it was exploited
for several algorithms: Support Vector Machine training, Hayashi - Yoshida correlation estimator,
Count Min Sketch and Exponential Histogram extension were designed. In D3.2 the Mutual
Information and Transfer Entropy estimators have been designed using the same methodology.
The output of the corresponding hardware models is equivalent to the reference software and so
the hardware modules can be used as ―hardware libraries‖: for the Maxeler Platform. As was
described in D3.1 the Maxeler Platform architecture is a general purpose, Linux-based server with
a powerful FPGA-based coprocessor. Algorithms begin their execution on the processor and the
hardware libraries, i.e. the part of the algorithm that has been mapped to hardware are called as a
procedure. When the hardware library produces the results it sends them back to the processor
and algorithm execution continues from the point on. The user has no knowledge on algorithm
execution as software remains the same, the only difference for the user should be the time for the
algorithm execution. The system that is formed this way can be connected as a module to the
QualiMaster pipeline.

QualiMaster Deliverable 3.2

Page 12(of 47) www.qualimaster.eu

Data
Receive
Spout

Data
Transmit

Bolt

HW Hayashi-Yoshida Topology HW Mutual Information Topology

Hayashi-Yoshida
Module

TCP Server

Mutual Information
Module

Maxeler Server

Data
Receive
Spout

Data
Transmit

Bolt

PIPELINE INFRASTRUCTURE

Figure 1: Hayashi Yoshida and Mutual Information Topologies of the Storm based
QualiMaster Pipeline

Figure 1 shows the way that the Maxeler platform with the Hayashi - Yoshida or/and Mutual
Information modules is used as a module of the QualiMaster pipeline. In this case the QualiMaster
pipeline can use the Hayashi Yoshida Hardware topology or the Mutual Information Hardware
topology of the Storm platform, or use both of them. Data are sent from the Pipeline Infrastructure
to the Data Transmit Bolt. The Bolts for the Hardware-based Topologies are different from those of
Software-based Topologies as they do not make any calculations and they just pass data to the
Maxeler Server. The Maxeler server uses a TCP Server (sockets server) to get the data. The data
are subsequently transmitted to the corresponding module in the Maxeler DFEs (FPGAs) which
process them and produce the algorithm’s result. The results are transmitted back through the
TCP Server and end up at the Data Receive Spout of the corresponding topology. As the Data
Transmit Spout and the Data Receive Spout are different modules they can exist at different
servers. Each Maxeler platform with 4 FPGAs can host up to 4 topologies. These topologies can
serve the same or different algorithms.

Deliverable 3.2 QualiMaster

© QualiMaster Page 13(of 47)

3 Design of Architectures

3.1 ECM-sketches

3.1.1 Introduction

The processing of continuous high-volume streams of data in real time is one of the goals of the
QualiMaster project. There are many applications that need the building of concise, approximate
sketch synopses of the input streams in real time. Such sketch structures typically require small
space and update time, and they can be used to provide approximate query answers with
guarantees on the quality of the approximation. ECM-sketch data structure [1] is a sketch synopsis
that allows effective summarization of streaming data over both time-based and count-based
sliding windows with probabilistic accuracy guarantees.

3.1.1.1 Algorithm

The ECM-sketch combines the well-known Count-Min sketch structure [2], which is used for
conventional streams, with a state-of-the-art tool for sliding-window statistics, i.e. the Exponential
Histograms [3].The input of the ECM-sketch data structure is a number of distributed data streams.
The output of the ECM-sketch algorithm is a sliding window sketch synopsis that can provide
provable, guaranteed error performance for queries, and can be employed to address a broad
range of problems, such as maintaining frequency statistics, finding heavy hitters, and computing
quintiles in the sliding-window model.

As described above, the ECM-sketch combines the functionalities of Count-Min sketches and
exponential histograms. Both of Count-Min and Exponential Histograms algorithms were
analytically described and presented in Deliverable D3.1. This section presents a synopsis of these
two algorithms. The Count-Min sketch is a popular and simple algorithm for summarizing data
streams by providing decent summary statistics. The Count-Min sketches can be used for handling
multiple and high-frequency data streams with surprisingly strong accuracy. A Count-Min sketch is
composed of a set of d hash functions, h1(.), h2(.),, hd(.), and a 2-dimensional array of counters
of width w and depth d. Hash function hj corresponds to row j of the array, mapping stream items to
the range of [1... w]. Let CM[i,j] denote the counter at position (i,j) in the array. To add an item x of

value vx in the Count-Min sketch, we increase the counters located at CM[hj(x), j] by vx, for j ɴ[1 ...
d]. A query for an item q is answered by hashing the item in each of the d rows and getting the
minimum value of the corresponding cells. Note that hash collisions may cause estimation

inaccuracies only overestimations. By setting d=ổln(1/δ)Ỗand w =ổe/εỖ, where e is the base of the
natural logarithm, the structure enables point queries to be answered with an error of less than
e||a||1, with a probability of at least 1-δ, where ||a||1 denotes the number of items seen in the
stream. Similar results hold for range and inner product queries.

On the other hand, the Exponential histograms (EHs) data structures are used by the ECM-sketch
for answering queries over different data streams in a sliding-window model. Exponential
histograms [3] are a deterministic structure, proposed to address the basic counting problem, i.e.,
for counting the number of true bits in the last N stream arrivals. The EHs is a method that breaks
the sliding window range into smaller windows, called buckets or basic windows, to enable efficient
maintenance of the statistics. Each bucket contains the aggregate statistics, i.e., number of arrivals
and bucket bounds, for the corresponding sub-range. The buckets, which no longer overlap with
the sliding window, expire and are discarded from the structure. To reduce the space
requirements, exponential histograms maintain buckets of exponentially increasing sizes. The EHs
access each data element at its arriving time and needs to be processed in real time. This
constraint can be really challenging to be satisfied especially when there are irregularities and
bursts data arrival rates. This problem is mainly due to insufficient time for the underlying CPU to
process all stream elements or due to the memory bottleneck to process the queries.

ECM-sketches combine the functionality of Count-Min sketches and sliding windows, and support
both time-based and count-based sliding windows under the cash register model. The core

QualiMaster Deliverable 3.2

Page 14(of 47) www.qualimaster.eu

structure for the ECM-sketch algorithm is a modified Count-Min sketch. Count-Min sketches alone
cannot handle the sliding window requirement. To address this limitation, ECM-sketches replace
the Count-Min counters with sliding window structures, i.e. Exponential Histograms. Each counter
is implemented as an exponential histogram, covering the last N time units, or the last N arrivals,
depending on whether we need time-based or count-based sliding windows.

In more details, adding an item x to the ECM structure is similar to the case of the standard Count-
Min sketches. The process for time-based sliding windows is depicted in Figure2. First, the
counters CM [hj(x), j], where j є {1 . . . d}, corresponding to the d hash functions are detected. For
each of the counters, we register the arrival of the item, and remove all expired information, i.e.,
the buckets of the exponential histogram that have no overlap with the sliding window range.

w counters

d
 h

a
s
h

 fu
n

c
tio

n
s

EH EH EH EH EH EH

EH EH EH EH EH EH

EH EH EH EH EH EH

EH EH EH EH EH EH

EH EH EH EH EH EH

Bucketo Bucket1 Bucket2 Bucket3

8 4 4 4

Exponential
Histogram (EH)

Hash
Func

ECM Sketch

x, z, y, w, é

5, 7, 8, 15, é

Stream

Value

Add (x, 5)

+5

+5

+5

+5

+5

f(x)

Figure 2: Example of adding a new element (x, 5) on an ECM sketch data structure. Hash
Function is described by the equation: f(x) = (ax + b (mod p)) (mod w), where a,b are

random numbers, p is a prime and w the number of exponential histograms mapped on
each line of the ECM sketch

ECM-sketches support point queries, inner product queries, and self-join queries, and there are
derive probabilistic guarantees for the accuracy of the estimation. In our future plans, we aim at
mapping such functionality on hardware in order to fully support the functionality of the ECM-
sketches for the QualiMaster infrastructure.

3.1.1.2 Related Work

This is the first attempt for mapping an algorithm that combines stream-processing with sketch
data structures, like ECM-sketch algorithm, on reconfigurable hardware. On the other hand, there
are previous hardware-based works that implement stand-alone sketch data structure algorithms
and stream processing algorithms on hardware in order to accelerate their performance.
Lai et al. [4] presented an implementation of sketching techniques using an FPGA-based platform,
for the purpose of anomaly detection. Their implementation scales easily to network data stream
rates of 4Gbps. Lai and Byrd [5] implemented a Count-Min sketch on a low-power stream
processor, which processes a throughput rate up to 13 Gbps according to their results. In [6],
Thomas et al. describe their implementation on an IBM cell processor with 8 processing units.
Their results show an almost 8-fold speedup vs. the single-thread sequential code. Wellem et al. in
[7, 8] proposed to use Graphics Processing Units (GPUs) for offloading heavy sketch computations
for network traffic change detection. Their experiment results showed that GPU can conduct fast
change detection with query operation up to 9 million distinct keys per second and one order of
magnitude faster than sequential software version.
Fowers et al. [9] analyzed the sliding-window applications domain when executing on FPGAs,
GPUs, and multicores. For each device, they presented optimization strategies and analyzed the
cases, where each device was most effective. The results showed that FPGAs can achieve
speedup of up to 11x and 57x compared to GPUs and multicores, respectively, while also using
orders of magnitude less energy. Qian et al. in [10] presented a novel algorithm named M3Join,

Deliverable 3.2 QualiMaster

© QualiMaster Page 15(of 47)

which was implemented on an FPGA platform. The system needs only one scan over the data
streams since different join queries share the intermediate results. The experimental results show
that the hardware can accelerate join processing vastly.

3.1.2 Architecture

As described above, the ECM sketch is a compact structure combining a state-of-the-art sketching
technique for data stream summarization, i.e. the Count-Min data structure, with deterministic
sliding window synopses, i.e. the Exponential Histograms. This section presents a parallel
reconfigurable-based architecture for the ECM-sketch data structure. The proposed architecture
combines the hardware architectures for the Count-Min and the Exponential Histogram algorithms,
which were presented in Deliverable D3.1.
First, we present briefly the hardware implementation of the Count-Min data structure, as it was
described in Deliverable 3.1. The hardware-based architecture mapped the update function for the
Count-Min data structure on reconfigurable hardware, whereas the query functionality was
implemented by the host CPU of the Maxeler server. The proposed architecture for the Count-Min
data structure is presented in Figure 3. The implemented module takes as input streaming tuples
that consist of an ID and a value. The hash functions are implemented as lookup tables in
reconfigurable hardware, where the precomputed values have been loaded. The lookup tables
take as input the streaming IDs and output the corresponding values from the hash functions.
These values are used as index to the memories. Each memory module corresponds to a single
row of the Count-Min data structure. The values are updated and stored again in Block Rams
(BRAMs). When the processing finishes, the values of the memories return to the shared memory,
which can be accessed by the CPU, too. The query processing takes place from the CPU. When a
new query arrives, the CPU reads the CM sketch data structure from the shared memory and
returns the query estimation. Concluding, it is important to clarify that the proposed architecture
exploits the coarse grained parallelization that the hardware can offer by processing in parallel the
d rows of a Count-Min data structure.

Streaming IDs

Read

Address
Hash

Function

0

Hash

Function

1

Hash

Function

d

Streaming Values

Mem 0Write

Address +

+

Read

Address

Write

Address

+

Read

Address

Write

Address

Mem 1

Mem d

New Value

New Value

New Value

Update Architecture

Row 0

Row 1

Row d

Shared

Memory

CPU

Figure 3: First hardware-based architecture for mapping Count-Min data structure

Next, the proposed architecture for mapping the Exponential Histogram synopsis on hardware, as
described in Deliverable D3.1, is presented. The proposed reconfigurable architecture takes as
input either a stream of elements with values 1s or 0s with their corresponding timestamps or a
stream of timestamps for estimation. The update process is separated into two stages: the update
process and the check for expiry stage. At each new arrival of an element, two processes take

QualiMaster Deliverable 3.2

Page 16(of 47) www.qualimaster.eu

place independently and in parallel in all buckets of the Exponential Histogram. First, the expired
elements are omitted from the buckets. Second, the new element that arrives to the first bucket is
stored. At the same time, all the buckets of the data structure are updated with the new values (if
there are new values) that come from their previous buckets with the pipeline process. As shown
in Figure 4, the buckets form a complex data structure like a 1-D array, which works like a complex
shift-register. The shift process takes in two places concurrently. The first shift process takes
places internally in each bucket. When a new value arrives at the input of a bucket all the previous
values from the internal memories are shifted to the right memory module for one place. After the
insertion completes in the bucket, there is a specific functionality, which checks for a merging
condition for the last two elements of the bucket. If a new merged value needs to be passed to the
next level, it is stored in the pipeline registers. The update process for the next bucket continues
during the next clock cycle. The above process takes place at all the pipelined buckets
concurrently and at each clock cycle. The important issue here is that our implementation is fully
pipelined, which means that all levels can serve the insertion and merge processes at each clock
cycle. In other words, our proposed system exploits the fine grained parallelization that the
hardware can offer by executing concurrently and in parallel N, i.e. the number of ECM-sketch
buckets, different processes, i.e. update and check for merge, at each clock cycle.

Values

Streaming

Timestamp

EH Module

... 54, 53, 52

..., 1, 0, 1

...45 40 28 26

Valid

Elements?

Expired?

...20 18 7 4

Expired?

Valid

Elements?

BUCKET

LEVEL 0
BUCKET

LEVEL 1

BUCKET

LEVEL N

...

Window

Size

Estimation

Timestamp

... 39, 28, 6
Estimation

Module
Estimation

Module
Estimation

Value

Figure 4: Reconfigurable-based architecture for mapping Exponential Histogram data
structure

As referred above, the ECM data structure combines the Count-Min data structure with the
synopsis of the Exponential Histograms. Thus, the proposed architecture is a combination of the
proposed reconfigurable architectures that were proposed in Deliverable D3.1. The proposed
system is divided into three hardware-based entities: the Hash function module, the Count-Min
module and the Exponential Histogram module. An initial hardware-based architecture for the ECM
sketches is presented in Figure 5.

The proposed implementation takes as input streaming tuples with a format (Stream_ID, value).
Each time a new element arrives, the Stream_ID value enters the Hash function module. The
Stream_ID value is used for assigning the input element to a single Exponential Histogram data
structure at each one of the rows of the ECM sketch. The hash functions are implemented as
lookup tables. Thus, the FPGA-based internal memories, i.e. BRAMs, are preloaded with the hash
values. Next, each row of the Count-Min data structure is mapped as an Exponential Histogram
data structure. The important issue is that the Exponential Histograms of each row were grouped
into a single data structure with the same structure as the hardware-based EH data structure,
which is presented in Figure 5. The main difference here is that each element internally is
connected to a memory module, which keeps the values for the corresponding elements of the all

Deliverable 3.2 QualiMaster

© QualiMaster Page 17(of 47)

EHs of a row. Thus, as it is known that at each new element arrival only one EH of each row is
updated and also at the proposed pipelined module each pipeline stage works independently to
each other, then each pipeline stage can process at each clock cycle a different EH of the row.
The proposed structure exploits the fine grained parallelization that the hardware can offer by
processing in parallel N different values (like the number of total levels), which can belong to
different EHs. Also, the proposed architecture exploits the coarse grained parallelization by
processing each row of the EH independently.

w Exponential Histograms d
 h

a
s
h

 fu
n

c
tio

n
s

EH EH EH EH EH EH

EH EH EH EH EH EH

EH EH EH EH EH EH

Hash
Func ECM Sketch

Figure 5: Initial hardware-based architecture for mapping ECM on reconfigurable platform

3.1.3 Performance

This section presents the performance comparison between the hardware-based ECM sketch and
the official software solution using the same input parameters. The software implementation, which
was used for the experiments, is the official single-thread and fully optimized code that was
provided by the TSI Software group, which was the first that presented the ECM-sketch data
structure on streaming data [1]. The same input datasets and input parameters were used for both
the experiments that took place in software and hardware. The software solution ran on platform
with two 6core Intel Xeon @ 3.2 GHz, although it is single-threaded solution, with 50 GBs RAM.
The reconfigurable architecture was mapped on a Maxeler MPC-C platform with four Virtex 6
SX475T FPGA devices, two 6core Intel Xeon @ 3.2 GHz with 50GB RAM. For our performance
evaluation we used only one CPU and one out of the four available FPGA devices.

First, we need to clarify the size of the ECM-sketch data structure. In this first implementation only
a single row of the ECM sketch data structure, as shown in Figure 5, was built in both the
hardware-based and software-based experiments. Thus, our performance results show only the
advantages of the fine grained parallelization that reconfigurable logic can offer. The parallelization
of process for the hardware-based implementation for different rows of the ECM sketch is going to
be presented in the next Deliverable D3.3 of the QualiMaster project. Next, we had to define the

QualiMaster Deliverable 3.2

Page 18(of 47) www.qualimaster.eu

size of the single row of the ECM-sketch, i.e. w parameter, and the size of the increasing sized
non-overlapping buckets for each one the internal ECM sketches. These parameters are defined
by two factors: ε and δ, where δ is the probability for answering a query over the ECM sketch
within an error factor ε. In addition as far as the bucket size, the first bucket has size k+1 while the
rest buckets have size k/2 + 1. The variable k is bounded by the 1/ε value. According to [1], the
typical values for both ε and δ are in the space [0.05, 0.2]. Our proposed architecture is fully
parameterizable, which means that we can change the dimensions of the ECM sketch according to
the needs of the application. Also, the proposed architecture maps the complete update
functionality for the ECM sketch on reconfigurable logic. Last, for the hardware-based experiments
we built a simple software solution that is used for creating the proper structures, which consist of
the input datasets and which are passed to the reconfigurable part for updating the ECM-sketch
infrastructure.

Hardware-based ECM-sketches were evaluated with a set of extensive experiments, using large
real-world and synthetic datasets. The performance results and the increase on the processing of
streaming rates are presented in Table3. The results verify the high performance of the hardware-
based structure. We used the values δ = 0.4, ε = 0.05 and window size = 2000000 for both
software and hardware. Thus, the implemented structures keep information for a time window up
to 2000000 time units. As Table 3 shows, the hardware based ECM sketch data structure can
process streaming data with frequency almost up to 10 times higher than the software centralized
solution using low resource utilization, i.e. up to 20% for a single FPGA device. Also, it is important
to mention that this implementation of the ECM sketch uses only the fine grained parallelization
that hardware can offer.

The performance advantages for the hardware-based solution come from the complexity cost of
the software-based ECM sketch update process. In more details, the bottleneck in case of the
software implementation is the cost for the update process, which is amortized O(1) per element.
On the other hand, hardware takes advantage of the fine-grained parallelization leading to a
standard complexity O(1) for each new element.

Dataset #Events

SW Update HW Update
Update Rate

Increase Execution
Time (sec)

Update Rate
(#Elements/sec)

Execution
Time (sec)

Update Rate
(#Elements/sec)

Random_1 108 12.30 8129420 1.32 75707894 9.3x

Random_2 108 12.31 8124136 1.36 73426011 9.0x

SNMP 3.1*107 3.81 8152200 0.45 69209585 8.5x

IPS 108 12.86 7776654 1.31 76431383 9.8x

WC 108 11.97 8353521 1.33 75565332 9.0x

Table 3: Performance results for updating the hardware and software implementations of
ECM data structure

Our next steps will focus on increasing the reliability of the ECM sketch on answering correctly a
query, by decreasing the parameter δ; thus, more parallel processing elements will be mapped on
hardware, which means that more independent lines of the ECM sketch will be processed in
parallel. This scheme is going to increase the coarse grained parallelization, so the performance
gains from the hardware solution will increase. Also, the implemented architecture will be
expanded to more than a single FPGA-device in order to serve ECM sketches with even bigger
time window size. Next, the estimation process will be implemented and supported by the
hardware-based ECM sketch, as up to now only the update process is supported by our hardware-
based solution. Last, the increase in coarse grain parallelization will offer a performance

Deliverable 3.2 QualiMaster

© QualiMaster Page 19(of 47)

comparison between the distributed Storm-based solution of the ECM-sketch and the hardware-
based multi-FPGA with higher dimensions for the ECM sketch.

3.2 Hayashi-Yoshida Correlation

Most financial models for modelling risks on economics are based on the linear correlation, which
is used as a measure of dependence. The QualiMaster project focuses on methods that will
improve the risk analysis on financial data by monitoring fine granular data streams from stock
markets for event detection. The correlation estimator can be applied directly on series of stock
prices. This section describes a novel hardware-based system for the well-known Hayashi-Yoshida
Correlation Estimator [11].

3.2.1 Related work

There are many works that implement various correlation estimators on reconfigurable hardware.
Ureña et al. in [12] described the design and development of a correlation detector a low-cost
reconfigurable device. Fort et al. presented [13] an FPGA implementation of a synchronization
system using both autocorrelation and cross-correlation. Their results showed that FPGA devices
can efficiently map cross-correlation synchronizers. Lindoso et al. in [14] presented an FPGA-
based implementation of an image correlation algorithm, i.e. Zero-Mean Normalized Cross
Correlation. The experimental results demonstrated that FPGAs improved performance by at least
two orders of magnitude with respect to software implementations on a high-end computer. Liu et
al. in [15] presented a multi-channel real-time correlation system on a FPGA-based platform. Their
system offered sliding correlation processing. Their proposed system achieved higher flexibility
and accurate data-flow control when compared to previous traditional parallel processing
architectures.

3.2.2 System Architecture

The proposed architecture is a software-hardware co-design system, as presented in Figure 6. The
software part receives the streaming input data, it updates the data structures with the new data
and it streams out the results, while the hardware part implements all the computations. The
software code uses multiple threads. As shown in Figure 1, the Storm Topology for the Hayashi-
Yoshida algorithm consists of two main components, i.e. the data transmit Bolt and the data
receive Spout. These components run independently and concurrently, thus we used multiple
concurrently running threads for receiving the streaming data, updating the internal data structures
and transmitting streaming results back. The main difference between the new proposed
architecture and the previous one, which was proposed in Deliverable D3.1, is the new architecture
for the hardware-based implementation of the Hayashi-Yoshida Correlation Estimator that is
presented in the next section.

QualiMaster Deliverable 3.2

Page 20(of 47) www.qualimaster.eu

Stock Transactions

Transaction Intervals

CPU

FPGA

HY

Coefficient

Estimator

Shared Memory

Updated

HY

Coefficients

Read HY

Coefficients

Previous

HY

Coefficients

Maxeler MPC-C Server

Ethernet

Figure 6: Top level Implementation for HW-based Hayashi-Yoshida Correlation Estimator

3.2.2.1 Software-based Hayashi-Yoshida Correlation subsystem

This section presents the software part of the proposed Hayashi-Yoshida correlation estimator.
First, the system starts with the initialization of the internal data structures and the correlation
matrix that is stored in the shared memory of the Maxeler platform. Also, the system establishes a
TCP connection with the ―outside‖ world, which is used for receiving the streaming data and
transmitting the final results. Next, three independent parallel running threads are created. The first
thread is used as a communication interface between the Hayashi-Yoshida system and the
―outside‖ world. Also, it is used for parsing the streaming input data. The second thread reads all
the arrived transactions for a single timestamp and updates the corresponding data structures.
Then, these data structures are streamed to the reconfigurable part of the system, which
calculates the new coefficients for the HY correlation estimator. Last, the third thread is used for
reading the computed Hayashi-Yoshida coefficients from the shared memory and it calculates the
final correlation values, which are streamed out via TCP connection.

3.2.2.2 Hardware-based Hayashi-Yoshida Correlation subsystem

This section presents the new proposed hardware-based architecture for the Hayashi-Yoshida
correlation estimator subsystem. As presented in Deliverable D3.1, we proposed a new additive
method for calculating the HY estimator over a specific time window using the streaming nature of
the algorithm. Our proposed method offered lower complexity than the initially repetitive algorithm.

The reconfigurable part of the system, i.e. HY Coefficient Estimator module, calculates the HY
coefficients in an additive way. It calculates the HY estimation value for each one of the market
stocks pairs. The new architecture uses a different algorithmic scheme for calculating the Hayashi-
Yoshida coefficients. In more details, the HY Coefficient Estimator module consists of two smaller
modules that calculate independently and concurrently the correlation coefficients at the start and
at the end of the processing sliding time window. Next, the correlation coefficient from the starting
point of the processing window is subtracted from the correlation coefficient of the expiring point of
the processing window. The result of the subtraction is added to the correlation coefficient from the
previous timestamp. The final result is the new correlation coefficient for the pair of the processing
stock markets. Thus, in more details, we add the correlation value that comes from the new
transactions intervals and we subtract the correlation value that comes from the expired
transaction intervals, i.e. the transaction intervals that move outside the processing window, from
the previous correlation factor at each timestamp. Last, the new correlation value is sent back to
the shared memory and it is streamed again at the next timestamp for the calculation of the new

Deliverable 3.2 QualiMaster

© QualiMaster Page 21(of 47)

correlation coefficient for the next timestamp. The new hardware-based Hayashi-Yoshida
correlation architecture of the two parallel modules is presented in Figure 7.

Prices of Overlapping Transaction Interval (Expiring Timestamp)

HY Coefficient subsystem

Transaction Intervals for

the starting timestamp

Prices of Overlapping Transaction Interval (Starting Timestamp)

New Stock

Price A

Previous

Stock Price A

New Stock

Price B

Previous

Stock Price B

New Stock

Price A

Previous

Stock Price A

New Stock

Price B

Previous

Stock Price B

-

x

-

+

Transaction Intervals for

the expiring timestamp

-

x

-

Previous HY

Covariance

HY Covariance

coefficient for the

previous processing

window

(Shared Memory)

HY Covariance

coefficient for the

new processing

window

(Shared Memory)-
New HY

Covariance

Figure 7: HW-based Hayashi-Yoshida Coefficient Estimator subsystem

3.2.3 Performance

This section presents the performance achievements for the hardware-based Hayashi-Yoshida
Correlation Estimator on a hybrid platform. The proposed hardware-based system was mapped on
a Maxeler MPC-C platform with four Virtex 6 SX475T FPGA devices, 24 CPUs @ 1.6 MHz and 64
GBs RAM. For our performance evaluation we used only one CPU and one out of the four
available FPGA devices with low resource utilization, i.e., only 31% of BRAM resources, 27% of
Logic resources and 1% of DSP resources were utilized. Moreover, the system includes a single
node, which was used for the I/O operations using local network. The node consists of a Dual-core
AMD CPU @ 2.1 GHz and 8 GB RAM.

The implemented system was tested with synthetic and real life input datasets. As the proposed
implementation follows the streaming formulation, the size of the processing time window is
irrelevant to the performance of the implemented system, thus we used time window size with 1
hour, i.e. 3600 seconds and advance 1 sec, i.e. the smallest possible advance time. Thus, the
system can calculate the correlation of the input stock markets in real time.
First, Table 4 presents the execution time, i.e., the processing and the I/O time, for the
reconfigurable part of the hybrid platform for various input size datasets. During these tests, we
used the Storm Topology that is presented in Figure 1, for the I/O operations and the MPC-C
server for the computation of the stock markets’ correlation for various input size datasets. It is
important to mention that the reconfigurable architecture was mapped on single out of the four
existing four FPGA devices. It is obvious that reconfigurable system using a single FPGA device
and a single CPU node for I/O issues can compute the correlation metric for all the pairs of up to
5000 stock markets in less than 1 second, including the I/O time overhead. Thus, the proposed
single-FPGA system can process in real time up to 5000 stock markets over a sliding time window,
taking into account that the stock markets values arrive at a frequency of 1 second.

QualiMaster Deliverable 3.2

Page 22(of 47) www.qualimaster.eu

#Stock Markets
Processing Time overhead per

timestamp
(timestamp = 1 second)

80 0.002 sec

100 0.005 sec

500 0.017 sec

1000 0.049 sec

5000 0.869 sec

Table 4: Processing time per ñtimestampò for the proposed reconfigurable-based system

Next, we compared the performance of the software-based distributed Storm solution vs. the
hardware-proposed solution for exactly the same input parameters and various input datasets. The
Apache Storm system was mapped on a cluster with 7 nodes, where each node consists of a
Dual-core AMD CPU @ 2.1 GHz and 8 GB RAM. Table 5 summarized the results. As the table
indicates, the Storm-based solution can compute the correlation up to 500 stock markets when a
cluster with 7 high end nodes is used. On the other hand, a hybrid platform with a single cluster
node, which is used for the I/O operations and a high end FPGA device, can process up to 5000
stock markets in real time. This means, that a single FPGA can process about 10 times greater
number of stock markets than a cluster of seven nodes, which means that FPGA-based system
can calculate about 100 times more correlation values than a distributed cluster-based solution
taking into account that the correlation of all the pairs of the input stock market is calculated.

Stock Markets

Hybrid Platform Configuration for
Real Time Processing

1 Cluster node and MPC-C
server with a single FPGA

device utilized

Storm-
based

Platform

Real-life dataset
(80 stock markets)

√
1 Cluster

Node

100 √
1 Cluster

Node

250 √
4 Cluster
Nodes

500 √
7 Cluster
Nodes

1000 √ X*

5000 √ X*

Table 5: Real Time processing for standalone operating mode for the
Storm-based solution vs. FPGA-based based solution (* These datasets cannot be

processed in real time due to communication bandwidth limitations among the cluster
nodes)

Taking into account the results that are presented above, we conclude to the remarks that the
bottleneck in case of the Storm based solution is the communication bandwidth between the
cluster nodes. The parallel processing over a Storm-based cluster includes high communication
workloads, which lead to lower performance results. On the other hand, the hardware-based
implementation, at least this second proposed solution, uses a non-parallel processing solution

Deliverable 3.2 QualiMaster

© QualiMaster Page 23(of 47)

and it takes advantage of the high streaming rates that Maxeler nodes can offer and the fine
grained processing parallelization that can take place internally in the FPGA devices.

As shown, the implemented system offers really good performance for a high number of stock
markets. Our future plans will focus on increasing the coarse grained parallelization of the system
by mapping parallel processing proposed modules on all the available FPGA devices of the
Maxeler server. Thus, the next generation of the reconfigurable Hayashi-Yoshida Correlation
system will increase the number of the stock markets that will be processed in real time.

3.3 Mutual Information

3.3.1 Introduction

In this section we present a brief tutorial on Mutual Information (MI) as formulated in [16]. Mutual
Information (MI) determines how similar the joint distribution p(X, Y) is to the products of factored
marginal distribution p(X)p(Y). For QualiMaster Mutual Information can be used in order to
measure dependencies between different stocks, considering their price values as time series.

3.3.1.1 Algorithm

Mutual information I(X; Y) computes the amount of information a random variable includes about
another random variable, or in terms of entropy it is the decrease of uncertainty in a random
variable due to existing knowledge about the other. For example, suppose discrete random
variable X represents the roll of a fair six-sided dice, whereas Y shows whether the roll is odd or
even. Then, it is clear that the two random variables share information, as by observing one we
receive knowledge about the other. On the other hand, if we have a third discrete random variable
Z denoting the role of another dice, then variables X and Z or Y and Z do not share mutual
information. More formally, for a pair of discrete random variables X, Y with joint probability
function p(x,y) and marginal probability functions p(x)and p(y) respectively, the mutual information
I(X;Y) is the relative entropy between the joint distribution and the product distribution:

Ὅ(ὢ;ὣ) = В ὴὼ,ώὰέὫ
ὴὼ,ώ

ὴὼ ώὼ,ώ (1)

Mutual Information is a measure of the inherent dependence expressed in the joint distribution of X
and Y relative to the joint distribution of X and Y under the assumption of independence. Mutual
information therefore measures dependence in the following sense: I(X; Y) = 0 if and only ifX and Y
are independent random variables. This is easy to see in one direction: if X and Y are independent,
then p(x,y) = p(x) p(y), and therefore:

ὰέὫ
ὴὼ,ώ

ὴὼ ώ
= ὰέὫ1 = 0 (2)

Note that mutual information is symmetric in the arguments, that is I(X;Y) = I(Y;X). Furthermore, it
is a non-negative measure, which yields zero I(X;Y) = 0 if and only if random variables X and Y are
independent. Also if the used log base is 2, the units of mutual information are bits. The flowchart
that corresponds to the MI calculation is shown on the following figure. First the pdf estimation is
done and the MI is calculated.

QualiMaster Deliverable 3.2

Page 24(of 47) www.qualimaster.eu

pdf Estimation

pdf created

NO

MI Calculation

MI calculated

YES

NO

MI Result

YES

Input
Data

Figure 8: Mutual Information basic flowchart

3.3.1.2 Probability Density Function Estimation

Mutual Information takes as input the pdfs, p(x), p(y) and p(x, y) as shown in equation (1).
Histograms were used for pdf estimation. A histogram is a graphical representation of the
distribution of numerical data. It is an estimate of the probability distribution of a continuous
variable and was first introduced by Karl Pearson [21]. To construct a histogram, the first step is to
"Bin" the range of values—that is, divide the entire range of values into a series of small intervals—
and then count how many values fall into each interval.
Basically the value range of the X and Y random variables is divided into R segments, with R being
the number of Bins of the histogram. Then each value of the time series is classified into one of the
R Bins ant the value of that Bin is incremented by 1. For p(x, y) the result is a 2-D array and the
pair of X, Y values, each timestamp, is classified in one of the RxR Bins and its value is
incremented by 1. The result is the estimated pdfs for X and Y and X, Y.
There exist more methods for pdf estimation like Kernel Density Estimation (KDE) or K-Nearest
Neighbour (KNN) that will be considered at the next stage of implementation for the MI algorithm.

3.3.1.3 Related Work

Only a few hardware-based approaches have been proposed for Mutual Information, which will be
presented in this section.
An FPGA-based approach for Mutual Information computation was presented in [18] by Castro-
Pareja and Shekhar. The proposed architecture was called FAIR-II and achieved hardware
acceleration of mutual information-based image registration. More specifically, they aim at real-
time computation of image registration but without the use of supercomputers. Furthermore, their
architecture consists of two discrete steps both of which are carried out on hardware. In the first
step hardware creates the mutual and individual histograms based on an algorithm that transforms

Deliverable 3.2 QualiMaster

© QualiMaster Page 25(of 47)

the floating image’s coordinates to the respective reference ones with the use of Partial volume
interpolation. Subsequently, during the second part of their approach the partial joint histogram
values are sent to the accumulator and the total mutual information calculation is derived. Their
system was tested on an Altera Stratix EP1S40 FPGA and it was able to process50 million
reference image voxels per second. Compared to an optimized software implementation on a 3.2-
GHz Xeon workstation with 1 GB of 266 MHz DDRAM FAIR-IIdelivered x30 speedup for linear
registration and x100 speedup for elastic registration.
As for implementations that use GPUs in order to accelerate MI calculation there are some works
that achieve good results with respect to processing time. In 2007 Shams and Barnes presented
an efficient method for mutual information computation between images for NVIDIA compatible
devices [19]. The execution flow of their approach is as follows. First, as a pre-processing step
they transform the 2Djoint histogram calculation to a 1D code. Then, the probability mass function
calculation is distributed to L thread blocks each with N threads. Each block maintains a partial
histogram of its own in the global memory for the portion of the input data assigned to the block.
Partial histograms are finally summed up using a multithreaded reduction function. The
experimental results of the aforementioned implementation were carried out on an NVIDIA 8800
GTX platform. Moreover, results indicated that in the case of a3D image with approximately 7x106
voxels and 256 threads the GPU-based registration was around 25 times more efficient.
Another approach was presented in [20] by Lin and Medioni, who proposed a GPU implementation
to compute both mutual information and its derivatives. More specifically, in order to estimate the
probability density for the mutual information computation they use the Parzen Window method,
which directly utilizes the samples drawn from an unknown distribution and applies the Gaussian
Mixture model to estimate the probability’s density. Furthermore, they address the image
registration problem by estimating the transformation T that best aligns two images. In order to do
so they maximize mutual information by approximating its derivative with respect to T. The
opportunity for parallelism is offered by the inner summations in the required equations since the
statistics associated with each element are independent from the ones of the others, as well as
parallel shared memory access. The experiments of the aforementioned work were conducted on
an Nvidia GeForce 8800 GTX platform. For 1000 samples the computation time for both mutual
information and its derivatives is reduced up to a factor of 170 and400 respectively compared with
a work station level CPU.

3.3.1.4 Profiling

Mutual Information algorithm takes as input two time series representing two random variables. For
QualiMaster these time series are stock price values. In order to calculate the MI between two
random variables the Probability Density Functions have to be estimated. In this work histograms
were used for pdf estimation. The output of the histograms is p(x), p(y) and p(x, y). These functions
are represented by 1-D arrays for p(x) and p(y), and a 2-D array for p(x, y). The quality of the pdf
depends on the number of Bins selected for the application. The execution time of the pdf
estimation increases with the amount of input data that is the length of the time series. On the
Table6 below we present the pdf estimation processing time for different sizes of time series
length.

Time Series Length Execution time (ms)

10000 0. 23

100000 1.53

1000000 14.3

10000000 143

Table 6:Pdf estimation

As shown on the previous table the pdf estimation execution time increases linearly with the
increase of the input data.
As mentioned above, the quality of the pdf increases with the number of Bins, but increasing the
number of Bins leads to squared increase of the execution time for MI calculation. MI iterates over

QualiMaster Deliverable 3.2

Page 26(of 47) www.qualimaster.eu

the pdfs based on equation (1), which has a computational complexity of O(n2). The Table7 below
presents the relation between the number of Bins and the MI Sum execution time.

Num. Of Bins Execution time (ms)

100 0.11

500 24.5

1000 98.2

5000 2460

10000 9870

Table 7:MI calculation

Taking into account both Tables 6 and 7, the MI calculation execution time is the most time
consuming part of the MI calculation software. Although when a small number of Bins is used and
a very high amount of time series data pdf estimation can become more time consuming than MI
calculation, e.g. using 500 Bins (24.5 ms) and time series with 107 length (143 ms). Even though
pdf estimation can become more time consuming than MI calculation for certain parameters, it is
not the average case. On the average case, e.g. 1000 Bins and 105 time series length, pdf
estimation is 2% of the execution time. Because MI calculation (equation (1)) takes 98% of the
total execution time, it was chosen to be implemented on hardware.

3.3.2 Architecture

The MI system architecture is shown on Figure 9. The MI processing is divided in two parts, the
probability density function (pdf) estimation and the calculation of Mutual Information from the
function shown above (1). The pdf estimation, based on histograms, is calculated on software as it
is not computationally intensive as it is presented on the profiling section.
The pdfs, p(x, y), p(x), p(y), are streamed into hardware for the calculation of Mutual Information.
The length of the streams depends on the number of Bins that is R2. Each stream of the p(x) and
p(y) is streamed R times, with R being the number of Bins, in order to match the size of p(x, y). In
order to stream the data into the DFEs in the correct order either the values in p(x) or p(y) have to
be copied R times each, while the other is streamed R times. The processing is fully pipelined
meaning that each clock cycle the appropriate values of p(x, y), p(x) and p(y) have to arrive in the
cores at the same time for the correct results to be produced.
The MI calculation utilizes 3 of the 8 streams available on the Maxeler System. In order to further
accelerate the application the pdfs were divided by 2, providing 6 streams, 5 streams more
precisely. Basically the stream that is streamed R times is now streamed R/2 times. Also 2
hardware cores are responsible of calculating the partial MI results. This allowed more bandwidth
utilization and thus even better performance. Also, even with two cores the FPGA resource
Utilization remains at about 10% of the total available resources. This allows the implementation of
even more MI calculation cores. The problem is that there are not enough PCI streams that could
be used to feed more than 2 cores. The target is to increase the throughput/parallelization by
utilizing the LMEM bandwidth. The performance results for both the single and double core
architectures are presented in the next section.
The results from the hardware cores are streamed and accumulated on software to produce the
appropriate MI final result. Calculating the final result on hardware would result in reduced
performance as it would disrupt the pipeline, as it would need controlled inputs in order to
implement the Sum function which is presented more thoroughly below. Accumulating the partial
results on software is the most efficient solution for the Maxeler system.

Deliverable 3.2 QualiMaster

© QualiMaster Page 27(of 47)

pdf Estimation (SW)

MI1 MI2

x y

pdfs pdfs

+

MI(x,y)

HW

Figure 9:Mutual Information basic System Architecture

The basic hardware architecture for the calculation of MI (equation (1)) is presented on Figure 10.
This architecture represents each one of the MI1 and MI2 cores shown in Figure 9. The
architecture is fully pipelined, allowing an iteration of the Sum to be calculated every clock cycle.
The three pdfs are streamed to the pipeline, one value per pdf every clock cycle, are processed in
the pipeline and the results are accumulated in the Sum module.
Single precision cores were used for the calculations and most of the architecture modules, except
the log approx. and Sum modules, are basic floating point hardware cores for the mathematic
operations. The two components that differ, the log approx. and Sum module, are further analyzed
in the following sections.

QualiMaster Deliverable 3.2

Page 28(of 47) www.qualimaster.eu

Figure 10: Hardware Architecture

3.3.2.1 Log approximation

The logarithm of base 2 approximation component was designed based on the implementation
presented on [17]:

ὼ= 1 + άὼ 2Ὡᾀ,
ὰέὫ2 ὼ = Ὡὼ+ ὰέὫ2 1 + άὼ
Ὅὼ= (Ὡὼ+ ὄ)ὒ+ άὼὒ,
Ὅὼ/ ὒ ὄ= Ὡὼ+ άὼ,

ὰέὫ2 ὼ = Ὅὼ/ ὒ ὄ+ ὰέὫ2 1 + άὼ άὼ

This approach was followed as it provided the most efficient implementation with respect to
resources utilization and calculation overhead. Also the relative accuracy of this log
implementation is about 2.09352e-05. The problem with such relative accuracy is that the error is
accumulated in equation (1) leading to more significant error rates of about 1.0564e-2 for large
number of bins.
Two other methods were also considered and tested for the implementation of logarithm, Taylor
Series and Look Up Tables. The LUTs provide relatively good results with respect of accuracy, but
is restricted by the BRAM resources. For very large datasets and large number of bins the pdfs
take very small values which cannot be addressed by the LUT method. The Taylor Series have
about the same restrictions. They provide very good accuracy with small resources utilization only
if the inputs are close to a certain value. If a broader input needs to be addressed Taylor Series
need a lot of iterations in order to converge, and thus utilizing a lot more resources as Maxeler
hardware does not allow an efficient way for feedback/optimization operations and the iterations
have to be unrolled.

Deliverable 3.2 QualiMaster

© QualiMaster Page 29(of 47)

3.3.2.2 Sum

The Sum module is responsible of accumulating the partial results. The floating point adder that
accumulates the results needs 13 clock cycles in order to produce the result, but is fully pipelined.
The feedback is done by using a 13 slot buffer. This means that the first result is reported 13 clock
cycles after the inputs are inserted in the adder. In order to produce the correct result from
hardware one value for each of the p(x,y), p(x) and p(y), should be streamed every 13 clock
cycles, which would make the implementation very slow, exactly 13 times slower. In order to avoid
this drawback data are streamed every clock cycle and are accumulated and stored in the buffer.
Basically the first slot of the buffer contains the results for the 1st+14th+27th and so on iterations, the
second the accumulation of the 2nd +15th+28th and so on iterations. This applies in all the 13 slots
of the feedback buffer.
At the end of the calculation the last 13 results are streamed to the CPU where they are
accumulated in order to produce the correct results. Finally the Sum of the partial results of the two
cores is done on software as mentioned above. Basically 26 partial results, 13 from each core, are
accumulated to produce the final MI.

3.3.3 Performance

In this section the performance results for the implementations of the Mutual Information algorithm
on both software and hardware are presented. The platform, where both software- and hardware-
based experiments ran, was an MPC-C series Maxeler System, with two 6core Intel Xeon @ 3.2
GHz with 50GB RAM, and 4 DFEs (XCV6475T FPGAs) connected via PCI with the CPU, with a
2GB/s bandwidth. Also each DFE has a dedicated 24GB of RAM. The maximum bandwidth can be
achieved by using the 8 streams available for each DFE. Each stream has a maximum bandwidth
of 250MB/s.

3.3.3.1 Hardware vs. Software

The results of the comparison of the hardware and software implementations are presented on the
following Tables. In Table 8 the comparison of the software execution time with the hardware
execution time with 1 MI calculation core is presented, while Table 9 presents the same
comparison but with 2 cores running on the hardware. The experiments presented here and in the
next section were done using 100.000 length time series for two random variables. The random
variables represent stocks, while the time series are their values over time. The datasets were
taken from the data provided by Spring. The software used in these experiments is the equivalent
single thread implementation of the algorithm. It is written in C and the pdf estimation part is also
used on the hardware implementation in the host code segment. As a first conclusion by the
results it is clear that for small amounts of Bins the software implementation is much faster than
the hardware. This happens because the hardware function call and the initialization of the
streams need 5 - 30ms. On the other hand as the number of bins increases, the hardware
performance increases, as the initialization time is a small fraction of the calculation time. The first
architecture (1 MI calculation core) achieves a performance increase of up to 5.8x. For this
implementation 3 of the 8 streams to the DFEs were used and only 5% of the available FPGA
resources.

Num of Bins SW(sec) HW1(sec) SpeedUp

100 0.002 0.031 0.06

500 0.025 0.036 0.69

1000 0.095 0.046 2

2000 0.4 0.1 4

5000 2.5 0.45 5.6

10000 10.3 1.8 5.7

20000 41.5 7.1 5.8

40000 159 30.5 5.3

Table 8:SW vs. HW MI calculation time with 1 core

QualiMaster Deliverable 3.2

Page 30(of 47) www.qualimaster.eu

As mentioned above, there are 8 streams available for data streaming between the CPU and the
DFE. In order to utilize more of the available bandwidth the pdfs were divided by two, which allows
the use of 6 streams. Actually 5 streams are utilized as the pdf that was streamed R times is now
streamed R/2 times instead. Also by using 2 processing cores the processing power of the
hardware is doubled. This improvement allowed an increase on performance of up to 9.4x for large
number of Bins. Equation (1) allows the parallelization of the algorithm. The maximum available
bandwidth is the limiting factor as the 2 core implementation utilizes only 10% of the available
FPGA resources while using 5 of the 8 available streams.

Num of Bins SW(sec) HW2(sec) SpeedUp

100 0.002 0.036 0.05

500 0.025 0.037 0.68

1000 0.095 0.047 2

2000 0.4 0.077 5.2

5000 2.5 0.31 8

10000 10.3 1.1 9.4

20000 41.5 4.9 8.5

40000 159 19.7 8,1

Table 9:SW vs. HW MI calculation time with 2 cores

3.3.3.2 Hardware Implementations comparison

In this section the comparison of the performance of the single and double core architectures is
presented. On Table 10 the execution time of the different architectures is compared. As shown in
the Table due to the initialization time the 2 core architecture is slower for small number of bins.
The initialization of 2 more streams leads to this increase in execution time. While the number of
bins increases, the increase in performance approaches 1.5x, as the initialization overhead
becomes a small fraction of the total execution time. The increase in performance is less than 2,
even if the processing in hardware is doubled, because preprocessing in software is needed in
order to split the pdfs in half.

Num of Bins HW1(sec) HW2(sec) SpeedUp

100 0.031 0.036 0.86

500 0.036 0.037 0.97

1000 0.046 0.047 0.98

2000 0.1 0.077 1.3

5000 0.45 0.31 1.45

10000 1.8 1.1 1.6

20000 7.1 4.9 1.45

40000 30.5 19.7 1.55

Table 10:MI 1core Vs 2core HW implementations

The throughput presented on Table 11 is not the real PCI throughput but the application
throughput, as in the time factor the initialization of the DFE is taken into account. For small
number of bins the throughput of the 2 core implementation is lower than the 1 core, as the
initialization time remains the main factor of the execution time. With the increase of the number of
bins the throughput reaches up to 900MB/s for the 2 core architecture approaching the theoretical
PCI bandwidth for 5 streams, which is 1250MB/s. Also the 1 core architecture approaches the
theoretical bandwidth, which is 750MB/s for 3 streams, by achieving up to 670MB/s. As mentioned
above the throughput calculated is the application throughput and not only the hardware call
throughput.

Deliverable 3.2 QualiMaster

© QualiMaster Page 31(of 47)

Num of Bins HW1(MB/sec) HW2(MB/sec)

100 3.8 2.8

500 83 68

1000 261 213

2000 480 519

5000 667 806

10000 667 909

20000 676 816

40000 629 812

Table 11:Throughput comparison 3 streams ïvs. 6 streams

In 3.3.1.3 three implementations are presented, that achieve better performance increase than our
implementation. It is not safe to compare this implementation with the ones presented in [18], [19],
and [20] as the speedups mentioned consider different applications and Image related datasets.
Image values could be represented with 8 bits allowing the better utilization of the available
bandwidth, which would allow our implementation to achieve even greater performance.

3.4 Transfer Entropy

3.4.1 Introduction

In this section we present a brief tutorial on Transfer Entropy (TE) as formulated in [22].For
QualiMaster Transfer Entropy can be used in order to measure information transfer between stock
markets and in social media.

3.4.1.1 Algorithm

Transfer entropy is a non-parametric statistic measuring the amount of directed (time-asymmetric)
transfer of information between two random processes. Transfer entropy from a process X to
another process Y is the amount of uncertainty reduced in future values of Y by knowing the past
values of X given past values of Y. The transfer entropy can be written as:

ὝὢO ὣ= В ὴώὲ+ 1,ώὲ,ὼὲὰέὫ
ὴώὲ+ 1,ώὲ,ὼὲὴώὲ

ὴώὲ+ 1,ώὲ ώὲ,ὼὲ
ώὲ+ 1,ώὲ,ὼὲ (2)

Transfer Entropy from Y to X is written as:

ὝὢO ὣ= В ὴώὲ+ 1,ώὲ,ὼὲὰέὫ
ὴώὲ+ 1,ώὲ,ὼὲὴώὲ

ὴώὲ+ 1,ώὲ ώὲ,ὼὲ
ώὲ+ 1,ώὲ,ὼὲ (2)

Transfer Entropy is able to distinguish effectively driving and responding elements and to detect
asymmetry in the interaction of subsystems. Transfer entropy is conditional Mutual Information [25]

with the history of the influenced variable in the condition. Transfer entropy reduces to
Granger causality for vector auto-regressive processes. Hence, it is advantageous when the model
assumption of Granger causality doesn't hold, for example, analysis of non-linear signals.
However, it usually requires more samples for accurate estimation. While it was originally defined
for bivariate analysis, transfer entropy has been extended to multivariate forms, either conditioning
on other potential source variables or considering transfer from a collection of sources, although
these forms require more samples again.. The flowchart that corresponds to the TE calculation is
shown on the following figure. First the pdf estimation is done and the TE is calculated.

QualiMaster Deliverable 3.2

Page 32(of 47) www.qualimaster.eu

pdf Estimation

pdf created

NO

MI Calculation

MI calculated

YES

NO

MI Result

YES

Input
Data

Figure 11: Transfer Entropy basic flowchart

3.4.1.2 Related Work

Transfer Entropy calculation is a computationally intensive algorithm with O(n3) complexity, making
an excellent candidate for implementation on heterogeneous hardware. Mutual Information related
work is also related to Transfer Entropy, due to the similarity of the algorithms. For Transfer
Entropy two implementations can be mentioned.
Shengjia Shao et.al in [23] present an architecture that could achieve up to 111.47x SpeedUp
using a Maxeler System with a Xilinx Virtex-6 SX475T FPGA. Their implementation achieves such
a significant SpeedUp by using Bit-width Narrowing, in order to reduce the memory and bandwidth
requirements of the algorithm. Basically instead of streaming 32 Bit integers they stream 4 bit
Integers which allows a lot more parallelization, because 8 values can be streamed through each
stream, allowing the utilization of 24 Transfer Entropy processing cores. This implementation
requires certain characteristics by the dataset, as it requires that the bin values won’t exceed the
4Bit integer maximum value.
Patricia Wollstadt et al. in "Efficient transfer entropy analysis of non-stationary neural time series."
present an implementation of Transfer Entropy for neural time series, using GPUs. Their
implementation achieves a SpeedUp of about 50 on the NVIDIA GTX Titan.

3.4.1.3 Profiling

Transfer Entropy (TE) algorithm takes as input two time series representing two random variables.
For QualiMaster these time series are stock price values like in Mutual Information. In order to
calculate the TE between two random variables the Probability Density Functions have to be
estimated. For TE, just like Mutual Information, histograms were used for pdf estimation. The
output of the histograms are p(x), p(x, y), p(xn+1, x) and p(xn+1, x, y). These functions are
represented by a 1-D array for p(x), two 2-D arrays for p(x, y) and p(xn+1, x), and one 3-D array for

Deliverable 3.2 QualiMaster

© QualiMaster Page 33(of 47)

p(xn+1, x, y). The execution time of the pdf estimation increases with the amount of input data that is
the length of the time series. On the Table below we present the pdf estimation processing time for
different sizes of time series length.

Time Series Length Execution time (ms)

10000 0.5

100000 4.1

1000000 47.5

10000000 539

100000000 5124

Table 12:pdf estimation

As shown on the previous table the pdf estimation execution time increases linearly with the
increase of the input data.
As mentioned above, the quality of the pdf increases with the number of Bins, but increasing the
number of Bins leads to cube increase of the execution time for TE calculation. TE iterates over
the pdfs based on equation (2), which has a computational complexity of O(n3). The Table below
presents the relation between the number of Bins and the TE execution time.

Num. Of Bins Execution time (ms)

100 32

200 250

500 3930

1000 34150

1200 54132

Table 13:TE calculation

Just like with Mutual Information, for very small number of Bins and very large time series lengths
the pdf estimation can be more time consuming. On the average case (1000 Bins, 105-106 time
series length) the TE execution time takes 98% of the total execution time. So the TE calculation
part of the software was implemented on hardware.

3.4.2 Architecture

The system architecture for Transfer Entropy shown in Figure 12 is very similar to the architecture
presented in 3.4.2. The TE calculation also starts with the pdf estimation, which is done on
software, streams the pdfs data to the DFE where TE is calculated.
The pdfs p(x), p(x,y), p(xn+1,x) and p(xn+1,x,y) are streamed to the DFE The length of the streams is
R3, with R being the number of bins and R3 is the size of p(xn+1,x,y). In order for the rest
pdfs/streams to match the stream size of p(xn+1, x, y), p(x) is copied R times and streamed R time,
p(x, y) is streamed R times and p(xn+1, x) is copied R times. These array copies increase drastically
the memory requirements of the applications.
These streams utilize 4 of the 8 streams available on the Maxeler System. In order to further
accelerate the application the pdfs were divided by 2, providing 8 streams, actually 6 streams are
used as 2 streams remain the same for both cores, p(x) and p(x,y), which are streamed R/2 times.
Also 2 hardware cores are responsible of calculating the partial TE results. This allowed more
bandwidth utilization and thus even better performance. Also, even with two cores the FPGA
resource Utilization remains at about 10% of the total available resources, indicating that the
limiting factor remains the PCI bandwidth, just like in MI. The results from the hardware cores are
streamed and accumulated on software to produce the TE final result. Accumulating the partial
results on software is the most efficient solution for the Maxeler system.

QualiMaster Deliverable 3.2

Page 34(of 47) www.qualimaster.eu

pdf Estimation (SW)

TE1 TE2

x y

pdfs pdfs

+

TE(x,y)

HW

Figure 12: Transfer Entropy basic System Architecture

The basic hardware architecture for the calculation of TE (equation (1)) is presented on Figure 13.
This architecture represents each one of the TE1 and TE2 cores shown in Figure 12. The basic
architecture is almost the same as in Mutual Information. The basic difference of the two
algorithms is the size of the pdfs, which for MI is R2 and for TE is R3. The architecture is fully
pipelined, allowing an iteration of the Sum to be calculated every clock cycle. The four pdfs are
streamed to the pipeline, one value per pdf every clock cycle, are processed in the pipeline and the
results are accumulated in the Sum module.
Single precision cores were also used for the TE architecture modules, which are implemented
with floating point cores, except the log approx. and Sum modules. The two components that differ,
the log approx. and Sum module, were further analyzed in 3.42.1 and 3.4.2.2 respectively, as their
implementation is the same as in MI.

Deliverable 3.2 QualiMaster

© QualiMaster Page 35(of 47)

x

Log2
approx.

Sum

/

x

p(xt,yt)
p(xt+1,xt)

p(xt+1,xt,yt)

TE

x

p(xt)

p(xt+1,xt,yt)

Figure 13: Hardware Architecture for the Transfer Entropy implementation

3.4.3 Performance

In this section the performance results of the implementation of the Transfer Entropy algorithm on
hardware are presented. The platform where the experiments were run is the same MPC-C series
Maxeler System presented in the previous section for MI, with two 6core Intel Xeon @ 3.2 GHz
with 50GB RAM, and 4 DFEs (XCV6475T FPGAs) connected via PCI with the CPU, with a 2GB/s
bandwidth. The maximum bandwidth can be achieved by using the 8 streams available for each
DFE. Each stream has a maximum bandwidth of 250MB/s.

3.4.3.1 Hardware vs. Software

The results of the comparison of the hardware and software implementations are presented on the
following Tables. In Table 14 the comparison of the software execution time with the hardware
execution time with 1 TE calculation core is presented, while Table 15 presents the same
comparison but with 2 cores running on the hardware. The experiments presented here and in the
next section were done using 100.000 length time series for two random variables. The random
variables represent stocks, while the time series are their values over time. The datasets were
taken from the data provided by Spring. The software used in these experiments is the equivalent
single thread implementation of the algorithm. It is written in C and the pdf estimation part is also

QualiMaster Deliverable 3.2

Page 36(of 47) www.qualimaster.eu

used on the hardware implementation in the host code segment. Also it is optimized as it is 50%
faster than the software presented in [23]. The processing time results show that even for small
amounts of Bins the hardware implementation is faster than the software, unlike MI. The 100 Bins
for TE is like the 1000 bins for MI with respect to the streamed data size, where MI is faster than
software. As the number of bins increases, the hardware performance increases, as the
initialization time is a small fraction of the calculation time. The first architecture (1 TE calculation
core) achieves a performance increase of up about 3.5x. For this implementation 4 of the 8
streams to the DFEs were used and only 5% of the available FPGA resources.

Num of Bins SW(sec) HW1(sec) SpeedUp

100 0.074 0.054 1.4

200 0.53 0.16 3.3

500 6.1 1.7 3.6

800 23.3 6.8 3.4

1000 45.2 13.4 3.4

1200 77.8 22.4 3.5

1300 98.9 28.8 3.4

Table 14:SW vs. HW TE calculation time with 1 core

There are 8 streams available for data streaming between the CPU and the DFE in the Maxeler
MPC-C series system. In order to utilize more of the available bandwidth the pdfs were divided by
two, which allows the use of 8 streams. Actually 6 streams are utilized as the pdfs p(x) and p(x, y)
that were streamed R times are now streamed R/2 times instead and are used by both the
processing core. Also by using 2 processing cores the processing power of the hardware is
doubled. This improvement allowed an increase on performance of up to 5.4x for large number of
Bins. Equation (2) just like in Mutual Information allows the parallelization of the Transfer Entropy
algorithm. The maximum available bandwidth is the limiting factor as the 2 core implementation
utilizes less than 10% of the available FPGA resources while using 6 of the 8 available streams.

Num of Bins SW(sec) HW2(sec) SpeedUp

100 0.074 0.046 1.6

200 0.53 0.11 4.8

500 6.1 1.1 5.5

800 23.3 4.5 5.2

1000 45.2 8.5 5.3

1200 77.8 14.5 5.4

1300 98.9 18.4 5.4

Table 15:SW vs. HW TE calculation time with 2 cores

3.4.3.2 Hardware Implementations comparison

In this section the comparison of the performance of the single and double core architectures is
presented. On Table 16 the execution times, for different numbers of Bins, of the two architectures
are compared. As shown in the Table while the number of bins increases, the increase in
performance approaches 1.6x, as the initialization overhead becomes a small fraction of the total
execution time. The expected performance increase is 2x as the processing is doubled by using 2
hardware cores. The 2 core architecture needs preprocessing in software in order to split the pdfs
in half, which reduces the factor from 2x to 1.6x.

Deliverable 3.2 QualiMaster

© QualiMaster Page 37(of 47)

Num of Bins HW1(sec) HW2(sec) SpeedUp

100 0.054 0.046 1.2

200 0.16 0.11 1.5

500 1.7 1.1 1.5

800 6.8 4.5 1.5

1000 13.4 8.5 1.6

1200 22.4 14.5 1.5

1300 28.8 18.4 1.6

Table 56:TE 1core Vs 2core HW implementations

The throughput presented on Table 17 is not the real PCI throughput but the application
throughput as in the time factor the initialization of the DFE is taken into account. For small number
of bins the throughput of the 2 core implementation is lower than the 1 core, as the initialization
time remains the main factor of the execution time, just like in MI. With the increase of the number
of bins the throughput reaches up to 1.4GB/s for the 2 core architecture approaching the
theoretical PCI bandwidth for 6 streams, which is 1.5GB/s. On the other hand, the 1 core
architecture exceeds the theoretical bandwidth, which is1GB/s for 4streams, by achieving 1.2GB/s.
It is not clear why the 4 stream maximum bandwidth is exceeded. Probably there are some
optimizations done by the Maxeler OS/Maxcompiler, if there are available unused streams, which
allow the utilization of more than one stream for each one of the user defined streams.

Num of Bins HW1(MB/sec) HW2(MB/sec)

100 297 261

200 800 873

500 1176 1364

800 1205 1365

1000 1194 1412

1200 1234 1430

1300 1221 1433

Table 17:Throughput comparison 4 streams ïvs. 6 streams

The only implementation this work could be safely compared with is the one presented in [23] as
similar datasets are used while the experiments are done on the same platforms. The Transfer
Entropy implementation presented is only 5x faster than the equivalent software implementation,
while the implementation presented in [23] mentions speedups of about 112x over their software,
which is 50% slower than our software implementation. This happens due to the optimizations
implemented in [23]. These optimizations are data dependent, like Bit-width Narrowing which
allowed better bandwidth utilization. If different datasets are used this technique may not be viable.
This work, on the other hand, has the scope to be able to handle any dataset, or configuration
(Num of Bins), while maintaining the required accuracy. Using such techniques like the ones
presented in [23] would narrow the TE configurations/datasets this hardware implementation would
be able to handle.

3.5 SVM

3.5.1 Introduction

Support vector machines (SVMs) were introduced by Vapnik et al. in the early 90s [26] and are
considered to be highly accurate methods for a various set of classification tasks. Manning et al.
provide a formalization of the SVM classification method in the context of classification. Given a set

QualiMaster Deliverable 3.2

Page 38(of 47) www.qualimaster.eu

of n training documents with/and the corresponding class labels, we make the assumption that the
training data is linearly separable. The linear SVM method aims at finding a hyperplane that
separates the set of positive training documents from the set of negative documents with a
maximum margin. In 1992, Vapnik et al. suggested a way to create nonlinear classifiers by
applying the kernel trick (originally proposed by Aizerman et al.[27]) to maximum-margin
hyperplanes. The resulting functionality suggests that every dot product is replaced by a nonlinear
kernel function to allow fitting the maximum-margin hyperplane in a transformed feature space.

In the previous deliverable we analyzed and stressed out that the kernel computation, i.e. matrix-
vector operations, constitute the most computationally expensive and time consuming part of the
SVM Training algorithm, as it ranges from 75% to 80% of the program’s total runtime. Furthermore,
due to the fact that dataflow architectures are designed to support thousands of simple arithmetic
operations and in addition the kernel computation of the SVM method has been proven to be
highly parallelizable, we decided to map this task on a special-purpose platform

Recall that we selected the following operation to be designed and implemented on an FPGA:

ὨέὸὼὮ,ὼὮ 2ὨέὸὼὭ,ὼὮ

ὲόάέὪὨὥὸὥ

Ὦ= 1

Where j denotes all the data instances in the input dataset, i shows the index of the element in the
working set and dot() is the dot product operation.

3.5.2 Summary of First Architecture

Our first approach, described in the first deliverable of QualiMaster, did not yield performance
improvement. Recall that in order to obtain proper functionality we used the stream offset
functionality of Maxeler that preserves a buffer containing the elements of a specific, predefined
window of data. We selected the specific functionality to access data that appear after the current
data sample that is flowing through the DFE. This was necessary to obtain the whole dot product
computation.

Moreover each element of the xi vector, which remains constant during the summation loop, was
sent into the DFE as a scalar, and therefore was stored in the FPGA in a register. Hence, these
elements were always available for kernel computation. However, this also limited the possible
size of input vector xias it had to equal at most the available number of registers in the DFE. Thus,
our first approach could not be tested with datasets whose feature space was more than a few
tens of features which led to our second approach.

3.5.3 Second Architecture

Given that our main goal was to accelerate the kernel function computation, we carried out the
necessary problem partitioning. Recall that the input of the training algorithm is a dataset which
comprises several data instances and whose size ranges from a few Megabytes to several
Gigabytes. Furthermore, this dataset is transformed into a two dimensional data structure with
dimensions mxn, where m denotes the number of data instances and n shows the maximum
number of features. Due to the fact that producing a dot-product is completely independent from
producing another, we divided the mxn dataset into chunks. Each of these chunks is processed in
parallel with the others. Finally, a kernel function does not only require the result of the dot-product
of a data instance with another, but also the dot product of each data instance with itself. These
separate dot products are also produced in parallel to reduce the total kernel function computation

time from T to approximately
Ὕ

7
, where T shows the hardware execution time with one hardware

core and 7 denotes the number of chunks each of which is transformed to a one-dimensional
vector. In particular, the two-dimensional dataset is transformed into seven vectors in a zig-zag

Deliverable 3.2 QualiMaster

© QualiMaster Page 39(of 47)

order, i.e. (1,1), (2,1), … ,(14,1),(1,2),(2,2)...(k-1,l),(k,l), where k and l the last row and last column
of a chunk respectively. The reason for this data arrangement lies in the fact that we want to
overlap the feedback created by the adder in the dot product with useful computations.

An overview of our new system is shown in Figure 14. The hardware module undertakes the kernel
function computation. Data instances i and j of the working set are streamed into the DFE. Thus,
the reconfigurable system does not depend on the feature space of the training dataset, but is fully
parameterized; it changes dynamically the dimensions of the data structures according to the
needs of the application. Another high-level detail is that the training dataset is not inserted into the
DFE from the CPU in streams. More specifically, the training data samples are stored in the
beginning of the program into the off- chip DRAM (LMem). Then, the LMem feeds the Kernel with a
data element per time instance, and the same applies for the CPU.

Figure 104: SVM Kernel Computation System Overview

The kernel computation of one parallel hardware unit is shown in Figure 15. Due to the fact that we
pipeline 7 streams in this architecture, we have 7 parallel processing units to reach maximum
performance. Each of these units produces a partial kernel computation that is sent back to the
host in order for the final output to be carried out. Given that we pipeline 7 streams into the kernel,
the hardware produces 7 partial kernel functions. In order to do so the FPGA carries out 14 dot-
products in parallel, and therefore a total of 14 multiplications and 14 sums are required for the
whole design. In the trivial loop used for the dot-product calculation we have looked at so far, each
iteration of the loop relies on a previous value. In particular the appearance of a new feature of a
data instance leads to a multiplication of this feature with the respective feature of instance i, as
well as to an aggregation of the computed value with the rest of the subtotal, i.e. sum = sum + xi*xj,
where sum is the remainder of the dot-product computation, and xi and xj show the features of data
instances i and j respectively. Recall, that the kernel computation also requires computing value
sum = sum + xj*xj which denotes the dot-product of a data instance with itself. Hence, since we
have 2 partial aggregations for each parallel instance, and given that there are 7 parallel units
running on the DFE , we have to preserve 14 such partial aggregations. This creates a pipeline
where each stage of the pipeline calculates a value of sum based on the value of sum from the
previous stage of the pipeline. Due to the fact that there is dependence from one iteration to the
next, and thus a cycle is created in the dataflow graph.

QualiMaster Deliverable 3.2

Page 40(of 47) www.qualimaster.eu

Figure 115: Dot-Product Hardware Architecture

3.5.4 Performance

Our main difference in resource and bandwidth utilization of the presented hardware system,
compared to our previous architecture is that in the former case we achieve maximum bandwidth
and limited resource utilization, whereas in the latter case we achieved the exact opposite.
However, the former approach also allows us to test high-dimensional datasets, and therefore is
considered more suitable for the SVM Training phase. In our previous architecture, resource
utilization was reduced, but at the same time we reached maximum possible bandwidth utilization.
A summary with the resource utilization of our second approach is shown in Table 18.

 Used
Maximu

m
Percenta

ge

LUTs
6802

5
297600 22.86%

FFs
9811

8
297600 32.97%

BRAM
s

536 2128 25.19%

DSPs 140 2016 6.94%

Table 18:MAX3A Vectis Resource Utilization of SVM Training Dataflow Architecture

Even in our last attempt to create an accelerated SVM Training system by utilizing the maximum
bandwidth and by performing in parallel as many operations as possible, we did not manage to
accelerate the respective LIBSVM software execution time. Recall that LIBSVM is the state-of-the-
art open source package for SVM Training and Classification. It is broadly used as reference
software by both the hardware and the software research communities. In order to conduct a
precise comparison between the hardware and software systems we considered the exact same
parameters, which are the kernel function and the arithmetic precision. In addition, our parallel
approach is compared with the package’s source code which is single thread. The performance of
our second architecture is shown in Table 19. The dataset size column contains values of the type
(a, b), where a shows the number of data samples in the dataset andb denotes the maximum
number of features.

Deliverable 3.2 QualiMaster

© QualiMaster Page 41(of 47)

Dataset Size
SW

(sec)
HW

(sec)
SpeedUp

(35*103, 22) 27.19 145.56 0.18

(21*104, 22) 1804 5733 0.31

(42*104, 22) 6795 19536 0.34

(6*103, 5*103) 16*105 44*105 0.36

(18*103,
5*103)

5*106 134*105 0.37

(48*103,
5*103)

102*105 352*105 0.28

(75*102,
2*103)

2.71 8.8 0.3

Table 19:Performance of SVM Training Dataflow Architecture

Regarding the comparison between LIBSVM and our more efficient hardware implementation we
observed that our overall system's performance was approximately 3 times slower. This number
corresponds to the time required by both systems to complete the SVM training phase. Thus, it
does not reflect the exact time required to perform the kernel computation which is the task that
was mapped on hardware. More specifically, it also includes the overhead of writing in the off-chip
memory and of initializing the streams that are inputted into the FPGA. In fact, we computed that
the core that performs the kernel computation for small datasets (35*103, 22) was 10 times slower
on hardware than on software, but for bigger datasets (6*103, 5*103) this number approached 1.
Firstly, we stress out that in a software implementation efficient data structures can be used,
whereas the same is not possible in a Maxeler system. On Maxeler we need to declare a single
constant size for our inputs, which is inevitably the maximum possible number of features in a data
sample. This also determines the number of clock cycles required by the hardware side to yield the
final outcomes. Moreover, recall that 61% of the FPGA's space remains unexploited. Yet, we could
not map additional parallel units (kernel computation cores) to the FPGA because the PCI express
only allows 8 input and 8 output lanes to and from the host to hardware respectively. In addition to
the limited number of inputs and outputs, our system significantly approached the maximum
possible bandwidth provided by a stream. More specifically, the PCI express used by MAX 3A
Vectis provides 250 MB/s per lane. For dataset (6*103, 5*103) we computed that 285 MBs/per lane
were transferred. We assume that this happens between the Maxeler System utilizes spare
streams in case they are not been utilized. All the aforementioned observations led to the
conclusion that the hardware core processing time should dominate the overall hardware runtime
in an application to achieve efficiency.
Research efforts towards developing efficient parallel Support Vector Machines implementations
span FPGA and GPGPU hardware-based approaches. The former class of implementations
focuses on low precision arithmetic and approximate solutions to yield speedup. In [28] Cadambi et
al. achieved 18.2x acceleration for 4-bit precision numbers, whereas in [29] Bouganis et al.
reached 1-2 orders of magnitude speedup by implementing a custom precision arithmetic
approach. Both these works compared the proposed hardware systems with their own software
implementations and in addition they produced approximate solutions. Our effort focused on
evaluating the performance of an FPGA-based approach that achieves the optimal solution and
that is compared with the state-of-the-art LIBSVM software package. Thus, even though we did not
reach the expected performance, we only considered exact solutions and compared our system
with the widely accepted and optimally developed LIBSVM package. In general, the GPGPU
hardware-based approaches have demonstrated accurate results and very good performance that
approaches ~80x acceleration compared to LIBSVM [30], [31]. Yet, the same was not observed in
the performance of our Maxeler hardware system due to the fact that the Maxeler platform does
not allow random memory accesses and does not offer the same bandwidth as the GPGPU cards.

QualiMaster Deliverable 3.2

Page 42(of 47) www.qualimaster.eu

3.6 Hardware-based Implementations tradeoffs

The previous sections presented the reconfigurable architectures and the corresponding
performance results for various streaming processing algorithms. We compared the performance
of the proposed implementations vs. single-threaded or multi-threaded software solutions. This
section sums up some important issues as far as the performance results and the restrictions of
the hardware-based solutions compared to the restrictions of software solutions. Also, we are
going to present the tradeoffs from the hardware-side perspective as far as the performance
achieved vs. other important parameters, like the accuracy, the capacity, etc.
First, a hardware-based solution for the ECM-sketch data structure was presented. The results
showed that this first hardware-based solution can offer really good performance, i.e. up to 10x, vs.
the official single thread software solution. The advantage of the hardware solution vs. software
implementation is that reconfigurable logic offers fine grained parallelization leading the processing
cost to O(1) for each new element, whereas the software solution can offer only amortized O(1)
cost for each element. Thus, the hardware-based ECM-sketch implementation offers really good
throughput in comparison to software with the same error rate, as we used the exactly the same
parameters. On the other hand, hardware solution is resource limited. In more details, a high
increase for the window size would lead to a lack of FPGA’s resources, i.e. internal memory, which
would lead to a need for a different architecture and the extension to multiple FPGA devices. The
same thing would take place in case of ECM-sketch data structures with higher dimensions. Such
kind of problems, are going to be solved in the next generation of the hardware-based ECM-sketch
solution.
Next, we presented a hardware-based solution for the Hayashi-Yoshida correlation metric. The
performance results are really impressive, as hardware can process in real time 10 times more
stocks markets, than a Storm-based solution on a small cluster of 7 nodes. The advantages of the
hardware-based Hayashi-Yoshida implementation is the high throughput that offers vs. software
with exactly the same accuracy. On the other hand, the proposed implementation is restricted by
the bandwidth and the number of the I/O buses between the hardware part and the software part
that prepares data. Thus, this restriction leads to lower parallelization level and we need to pass to
a multi-FPGA solution, i.e. next generation hardware-based Hayashi-Yoshida solution, in order to
solve this problem.
Two new hardware-based solutions for the Mutual Information and the Transfer Entropy algorithms
were presented. The performance results showed that hardware solutions can process input
datasets about 5- and 10- times faster than the corresponding single threaded solutions. The main
advantage of the hardware solutions is the high performance in accordance to the low resource
utilization, which leads to opportunities for higher parallelization levels. On the other hand, the
hardware based solution offers lower accuracy due to restrictions on the floating point modules
that are needed by such type of problems. The error that hardware-based solution creates is really
low and it does not seem to change the algorithmic characteristics of the output.
Last, a hardware based solution for the SVM algorithm was presented. As the results show, the
hardware-based solution offers a performance equal to the optimized software solution with exactly
the same accuracy. The main drawback in this hardware implementation is that the low
parallelization nature of the algorithm leads to not good performance results for the hardware
solution vs. the corresponding software implementation.
Concluding, this section presented the tradeoffs between the building a solution with really good
performance results vs. the software solution. Some general conclusion can come up from the
implementation of streaming algorithms on hardware and their performance comparison vs. the
software solutions. First, hardware platforms seem to offer a good solution vs. software
performance in cases that dataset is really big and the processing cost is high. The overhead for
the hardware running in cases with small datasets or small processing cost leads to reductions in
performance advantages vs. software solutions. Another restriction for the hardware
implementation is the bandwidth. We need to ―match‖ the Maxeler offered bandwidth to the needs
of the algorithm in order to take the best performance results, otherwise this could lead to
underutilization of the hardware, thus to lower parallelization levels. Last, another crucial issue for
the hardware solutions is the available resources. The proposed solutions need to fit in the
hardware devices as far as the available resources in order to take really good performance

Deliverable 3.2 QualiMaster

© QualiMaster Page 43(of 47)

advantages, otherwise more sophisticated solutions need to be suggested, e.g. multi-FPGA
solutions.

QualiMaster Deliverable 3.2

Page 44(of 47) www.qualimaster.eu

4 Outlook for the design automation tools

The QualiMaster partners worked on a Remote Procedure call interface between user applications
and DFE accelerators communicating via the World-Wide-Web. This functionality supports glue-
less interface between user level programs and accelerators by enabling remote deployment of
configuration bit-streams anywhere on the web and controlled remote DFE execution. The chosen
approach is scalable and allows multiple DFEs instantiating different streaming accelerators to be
used simultaneously while the data streams can be configured as parallel independent channels or
as a chain where the involved DFEs implement different computational phases. In the case when
the remote DFEs are instantiated by the Juniper Switch DFE based application acceleration
module (also referred as JDFE), high bandwidth and practically infinite in size streams of data can
be processed. Please note that JDFE is bit-stream compatible with Maxeler'sMAX4 ISCA
networking cards that can be used as a development platform.

In addition, partners worked on improving its SLiC interfaces in order to support multiple widely
used high-level languages. The system call prototypes exposed to the user application respect not
only the calling standards of the corresponding language but also are well documented and
support highly intuitive naming conventions (in addition to the three different DFE control levels).
MAX supported TSI in their implementation endeavors and will continue doing this during the next
phases of the projects.

Working on all the above interfaces, automated creation of APIs for different Maxeler platforms, for
every given algorithm based on its technical analysis is an option for the automation design tool.
Interfaces proved to be very significant in design procedure as many of the algorithms mapped on
hardware proved to be I/O bounded. Their performance was limited due to I/O restrictions.
Implementing mapped algorithm interface, with automation tool will offer an optimized interface.
Furthermore, such a tool will give flexibility to QualiMaster project and platform independence as
all the mapped algorithms would be easily retargeted to different Maxeler platforms.

Deliverable 3.2 QualiMaster

© QualiMaster Page 45(of 47)

5 Conclusions

This deliverable continues work that has been done in D3.1. Designs that came up from D3.1 have
been implemented, verified and evaluated for their performance at the Maxeler System Level.
These systems have been designed in order to be ready for the QualiMaster pipeline level
integration. Every single algorithm is integrated so that it can be added as a single topology while a
single Maxeler platform can host up to four topologies of the same or different algorithm.

Algorithm designs were improved and some of them where redesigned partially or completely. The
SVM algorithm was redesigned completely and the new design can handle bigger datasets but
without any performance boosting due to platform restrictions. The Hayashi Yoshida
implementation has a performance boost of 100 times vs. a conventional processor as it can
calculate correlation of 10 times more stocks, which results in a computational cost 100 times
bigger, in real time., using real life data. The Exponential Histogram was integrated with the Count
Min forming the ECM Sketch design, as is the original software. These implementations proved to
be 10 times faster but the hardware implementation can be extended and further optimized.

In this deliverable two more algorithms where added for both financial and social media data.
Transfer Entropy and Mutual Information. They both proved that they can be implemented
efficiently in Hardware, and they outperform by 5- and 10- times respectively their software
implementations. This is an initial approach and further optimization is expected.

For all the designs an initial interface with the QualiMaster pipeline has been designed and is
under development and testing. There is planning for hardware extensions of the mapped
algorithms such as the ECM Sketch with query functionality addition, or hardware implementation
of the probability density function (PDF) estimation for Mutual Information and Transfer Entropy.

In addition to the hardware designs, presented in D3.2 several guidelines were established
towards the automation design tool, to be developed in the following year.

QualiMaster Deliverable 3.2

Page 46(of 47) www.qualimaster.eu

References

[1] Papapetrou, O., Garofalakis, M., & Deligiannakis, A. (2012). Sketch-based querying of
distributed sliding-window data streams. Proceedings of the VLDB Endowment, 5(10), 992-1003.
[2] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch
and its applications. J. Algorithms, 55(1):58–75, 2005.
[3] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding
windows. SIAM J. Comput., 31(6):1794–1813, 2002.
[4] Lai, Y. K., Wang, N. C., Chou, T. Y., Lee, C. C., Wellem, T., & Nugroho, H. T. (2010, June).
―Implementing on-line sketch-based change detection on a netfpga platform‖.In 1st Asia NetFPGA
Developers Workshop.
[5] Lai, Y. K., & Byrd, G. T. (2006, December). ―High-throughput sketch update on a low-power
stream processor‖. In Proceedings of the 2006 ACM/IEEE symposium on Architecture for
networking and communications systems (pp. 123-132).ACM.
[6] Thomas, D., Bordawekar, R., Aggarwal, C. C., & Yu, P. S. (2009, March). ―On efficient query
processing of stream counts on the cell processor‖. In Data Engineering, 2009.ICDE'09. IEEE 25th
International Conference on (pp. 748-759). IEEE.
[7] Wellem, T., Lai, Y. K., Lee, C. C., & Yang, K. S. (2011, October). ―Accelerating Sketch-based
Computations with GPU: A Case Study for Network Traffic Change Detection‖. In Proceedings of
the 2011 ACM/IEEE Seventh Symposium on Architectures for Networking and Communications
Systems (pp. 81-82).IEEE Computer Society.
[8] Wellem, T., & Lai, Y. K. (2012, December). ―An OpenCL Implementation of Sketch-Based
Network Traffic Change Detection on GPU‖. In Parallel Architectures, Algorithms and
Programming (PAAP), 2012 Fifth International Symposium on (pp. 279-286). IEEE.
[9] Fowers, J., Brown, G., Cooke, P., & Stitt, G. (2012, February). ―A performance and energy
comparison of FPGAs, GPUs, and multicores for sliding-window applications‖. In Proceedings of
the ACM/SIGDA international symposium on Field Programmable Gate Arrays (pp. 47-56).ACM.
[10] Qian, J. B., Xu, H. B., DONG, Y. S., Liu, X. J., & Wang, Y. L. (2005). ―FPGA acceleration
window joins over multiple data streams‖. Journal of Circuits, Systems, and Computers, 14(04),
813-830.
[11] Hayashi, T., & Yoshida, N. (2005). ―On covariance estimation of non-synchronously observed
diffusion processes‖. Bernoulli, 11(2), (pp. 359-379).
[12] Ureña, J., Mazo, M., Garcıa, J. J., Hernández, Á.,& Bueno, E. (1999). ―Correlation detector
based on a FPGA for ultrasonic sensors‖. Microprocessors and Microsystems, 23(1), 25-33.
[13] Fort, A., Weijers, J. W., Derudder, V., Eberle, W., &Bourdoux, A. (2003, April). ―A performance
and complexity comparison of auto-correlation and cross-correlation for OFDM burst
synchronization‖. In Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP'03).
2003 IEEE International Conference on (Vol. 2, pp. II-341).IEEE.
[14] Lindoso, A., &Entrena, L. (2007). ―High performance FPGA-based image correlation‖. Journal
of Real-Time Image Processing, 2(4), 223-233.
[15] Liu, X., Sun, D. J., Teng, T. T., & Tian, Y. (2013). ―FPGA Implement of Multi-Channel
RealTime Correlation Processing System‖. Applied Mechanics and Materials, 303, 1925-1929.

[1] Cover, T.M., Thomas, J.A.: Entropy, relative entropy and mutual information.
Elements of Information Theory (1991) 12-49.
[17]http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html

[18] Castro-Pareja, C. R., Jagadeesh, J. M., &Shekhar, R. (2004, May). FPGA-based
acceleration of mutual information calculation for real-time 3D image registration. In
Electronic Imaging 2004 (pp. 212-219). International Society for Optics and Photonics.
 [19] Shams, R., & Barnes, N. (2007, December). Speeding up mutual information computation

using NVIDIA CUDA hardware. In Digital Image Computing Techniques and Applications, 9th
Biennial Conference of the Australian Pattern Recognition Society on (pp. 555-560).IEEE.

 [20] Lin, Y., & Medioni, G. (2008, June). Mutual information computation and
maximization using GPU. In Computer Vision and Pattern Recognition Workshops,
2008.CVPRW'08. IEEE Computer Society Conference on (pp. 1-6). IEEE.

Deliverable 3.2 QualiMaster

© QualiMaster Page 47(of 47)

[21]Pearson, K. (1895). Contributions to the mathematical theory of evolution. II. Skew
variation in homogeneous material. Philosophical Transactions of the Royal Society of
London. A, 343-414.
[22] Schreiber, T. (2000). Measuring information transfer. Physical review letters, 85(2), 461.
[23]Shao, S., Guo, C., Luk, W., & Weston, S. (2014, December). Accelerating transfer entropy
computation. In Field-Programmable Technology (FPT), 2014 International Conference on (pp. 60-
67).IEEE.
[24]Wollstadt, P., Martínez-Zarzuela, M., Vicente, R., Díaz-Pernas, F. J., &Wibral, M.
(2014).Efficient transfer entropy analysis of non-stationary neural time series.
[25]Wyner, A. D. (1978). "A definition of conditional mutual information for arbitrary ensembles".
Information and Control38 (1): 51–59
[26]Cortes, Corinna, and Vladimir Vapnik."Support-vector networks." Machine learning 20.3
(1995): 273-297.

[27]Aizerman, A., Emmanuel M. Braverman, and L. I. Rozoner. "Theoretical foundations of
the potential function method in pattern recognition learning."Automation and remote
control 25 (1964): 821-837.
[28]Cadambi, Srihari, et al. "A massively parallel FPGA-based coprocessor for support
vector machines." Field Programmable Custom Computing Machines, 2009.
FCCM'09.17th IEEE Symposium on. IEEE, 2009.
[29]Papadonikolakis, Markos, and C. Bouganis. "Novel cascade FPGA accelerator for
support vector machines classification." Neural Networks and Learning Systems, IEEE
Transactions on 23.7 (2012): 1040-1052.
[30]Carpenter, A. U. S. T. I. N. "cuSVM: A CUDA implementation of support vector
classification and regression." patternson screen. net/cuSVMDesc. pdf (2009).
[31]Do, Thanh-Nghi, Van-Hoa Nguyen, and François Poulet. "Speed up SVM algorithm for
massive classification tasks." Advanced Data Mining and Applications .Springer Berlin
Heidelberg, 2008.147-157.
[32]Wollstadt, P., Martínez-Zarzuela, M., Vicente, R., Díaz-Pernas, F. J., & Wibral, M.
(2014). Efficient transfer entropy analysis of non-stationary neural time series.
[33] Dollas, A., ―Big Data Processing with FPGA Supercomputers: Opportunities and
Challenges‖, In Proceedings, 2014 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pp. 474-479, IEEE Press, 2014.

